论文标题

多余的贝叶斯实验设计,以量化极端事件统计

Multi-fidelity Bayesian experimental design to quantify extreme-event statistics

论文作者

Gong, Xianliang, Pan, Yulin

论文摘要

在这项工作中,我们开发了一个多保真贝叶斯实验设计框架,以有效地量化具有给定输入概率和昂贵功能评估的输入到响应(ITR)系统的极端事实统计。这里的关键想法是利用低保真样本的响应可以以优化的配置以一定比例的一定比例计算,以减少总计算成本。为了实现这一目标,我们采用多保真高斯流程作为ITR函数的替代模型,并基于新的采集,基于该过程,可以根据其在样本空间和保真度级别中的位置选择优化的下一个样本。此外,我们对采集及其衍生产品进行了廉价的分析评估,避免了对高维问题的数值整合。新方法在双性恋环境中进行了测试,以解决一系列具有不同维度,低保真模型准确性和计算成本的合成问题。与具有预定义的保真度层次结构的单曲方法和BIFIDELITY方法相比,我们的方法始终在所有测试案例中显示出最佳(或最佳)性能。最后,我们使用计算流体动力学(CFD)将两种不同的网格分辨率作为高保真度模型来估算不规则波动中极端船舶运动统计的工程问题的优势。

In this work, we develop a multi-fidelity Bayesian experimental design framework to efficiently quantify the extreme-event statistics of an input-to-response (ItR) system with given input probability and expensive function evaluations. The key idea here is to leverage low-fidelity samples whose responses can be computed with a cost of a certain fraction of that for high-fidelity samples, in an optimized configuration to reduce the total computational cost. To accomplish this goal, we employ a multi-fidelity Gaussian process as the surrogate model of the ItR function, and develop a new acquisition based on which the optimized next sample can be selected in terms of its location in the sample space and the fidelity level. In addition, we develop an inexpensive analytical evaluation of the acquisition and its derivative, avoiding numerical integrations that are prohibitive for high-dimensional problems. The new method is tested in a bi-fidelity context for a series of synthetic problems with varying dimensions, low-fidelity model accuracy and computational costs. Comparing with the single-fidelity method and the bi-fidelity method with a pre-defined fidelity hierarchy, our method consistently shows the best (or among the best) performance for all the test cases. Finally, we demonstrate the superiority of our method in solving an engineering problem of estimating the extreme ship motion statistics in irregular waves, using computational fluid dynamics (CFD) with two different grid resolutions as the high and low fidelity models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源