论文标题
在牌照识别中的跨数据集概括上
On the Cross-dataset Generalization in License Plate Recognition
论文作者
论文摘要
自动车牌识别(ALPR)系统由于深度学习的进步和数据集的增加而在多个区域的车牌(LP)上显示出了出色的性能。深度ALPR系统的评估通常是在每个数据集中进行的;因此,如果这些结果是概括能力的可靠指标,这是值得怀疑的。在本文中,我们提出了一种传统的分类与一对止境实验设置,以凭经验评估在九个公开可用数据集中使用的12个光学特征识别模型(OCR)模型的跨数据库概括,在多个方面具有多种多样的公开可用数据集(例如,获得性设置,图像设置,图像分辨率和LP布局)。我们还介绍了一个用于端到端ALPR的公共数据集,该数据集是第一个包含具有Mercosur LP的车辆图像和摩托车图像数量最多的车辆图像。实验结果阐明了在ALPR环境中评估方法评估方法的局限性,因为在以一对偏差的方式训练和测试模型时,大多数数据集的性能下降都显着下降。
Automatic License Plate Recognition (ALPR) systems have shown remarkable performance on license plates (LPs) from multiple regions due to advances in deep learning and the increasing availability of datasets. The evaluation of deep ALPR systems is usually done within each dataset; therefore, it is questionable if such results are a reliable indicator of generalization ability. In this paper, we propose a traditional-split versus leave-one-dataset-out experimental setup to empirically assess the cross-dataset generalization of 12 Optical Character Recognition (OCR) models applied to LP recognition on nine publicly available datasets with a great variety in several aspects (e.g., acquisition settings, image resolution, and LP layouts). We also introduce a public dataset for end-to-end ALPR that is the first to contain images of vehicles with Mercosur LPs and the one with the highest number of motorcycle images. The experimental results shed light on the limitations of the traditional-split protocol for evaluating approaches in the ALPR context, as there are significant drops in performance for most datasets when training and testing the models in a leave-one-dataset-out fashion.