论文标题
通过选择性增强来改善分布的鲁棒性
Improving Out-of-Distribution Robustness via Selective Augmentation
论文作者
论文摘要
机器学习算法通常假定训练和测试示例是从相同分布中绘制的。但是,分配变化是现实世界应用中的一个常见问题,可能会导致模型在测试时的性能急剧恶化。在本文中,我们专门考虑了亚群偏移(例如数据不平衡)和域移位的问题。尽管先前的工作通常试图将模型的内部表示形式或预测指标显式化为域不变,但我们旨在学习不变的预测因子,而无需限制模型的内部表示或预测指标。这导致了一种简单的基于混合的技术,该技术通过称为LISA的选择性增强来学习不变的预测变量。丽莎选择性地将样品与相同的标签(但不同的域或相同域但不同的标签)进行选择性插值。从经验上讲,我们研究了丽莎对从亚群转移到域转移等九个基准的有效性,我们发现丽莎始终优于其他最先进的方法,并导致更不变的预测指标。我们进一步分析了线性设置,并从理论上展示了丽莎如何导致较小的最坏组误差。
Machine learning algorithms typically assume that training and test examples are drawn from the same distribution. However, distribution shift is a common problem in real-world applications and can cause models to perform dramatically worse at test time. In this paper, we specifically consider the problems of subpopulation shifts (e.g., imbalanced data) and domain shifts. While prior works often seek to explicitly regularize internal representations or predictors of the model to be domain invariant, we instead aim to learn invariant predictors without restricting the model's internal representations or predictors. This leads to a simple mixup-based technique which learns invariant predictors via selective augmentation called LISA. LISA selectively interpolates samples either with the same labels but different domains or with the same domain but different labels. Empirically, we study the effectiveness of LISA on nine benchmarks ranging from subpopulation shifts to domain shifts, and we find that LISA consistently outperforms other state-of-the-art methods and leads to more invariant predictors. We further analyze a linear setting and theoretically show how LISA leads to a smaller worst-group error.