论文标题

自动腹部器官分割的经常性特征传播和边缘跳过连接

Recurrent Feature Propagation and Edge Skip-Connections for Automatic Abdominal Organ Segmentation

论文作者

Yang, Zefan, Lin, Di, Ni, Dong, Wang, Yi

论文摘要

计算机断层扫描(CT)图像中腹部器官的自动分割可以支持放射疗法和图像引导的手术工作流程。由于CT图像中复杂的器官相互作用和模糊边界,开发这种自动解决方案仍然具有挑战性。为了解决这些问题,我们专注于有效的空间上下文建模和明确的边缘细分先验。因此,我们提出了一个3D网络,该网络具有四个经过四个经过训练的端到端的主要组件,包括共享编码器,边缘检测器,带有边缘跳过连接(ESC)的解码器(ESC)和经常性特征传播头(RFP-HEAD)。为了捕获大范围的空间依赖性,RFP头通过针对图像单元的空间排列而以有效的切片方式以有效的切片方式通过有效连接的定向无环形图(DAG)收集局部特征。为了利用边缘信息,边缘检测器通过通过边缘监督从编码器中利用中间特征来了解Edge的先验知识,以专门调整了语义细分。然后,ESC通过多级解码器特征汇总了边缘知识,以学习判别特征的层次结构,以明确建模器官内部和边缘之间的互补性进行分割。我们对具有八个带注释器官的两个具有挑战性的腹部CT数据集进行了广泛的实验。实验结果表明,所提出的网络的表现优于几个最先进的模型,尤其是用于分割小而复杂的结构(胆囊,食道,胃,胰腺和十二指肠)。该代码将公开可用。

Automatic segmentation of abdominal organs in computed tomography (CT) images can support radiation therapy and image-guided surgery workflows. Developing of such automatic solutions remains challenging mainly owing to complex organ interactions and blurry boundaries in CT images. To address these issues, we focus on effective spatial context modeling and explicit edge segmentation priors. Accordingly, we propose a 3D network with four main components trained end-to-end including shared encoder, edge detector, decoder with edge skip-connections (ESCs) and recurrent feature propagation head (RFP-Head). To capture wide-range spatial dependencies, the RFP-Head propagates and harvests local features through directed acyclic graphs (DAGs) formulated with recurrent connections in an efficient slice-wise manner, with regard to spatial arrangement of image units. To leverage edge information, the edge detector learns edge prior knowledge specifically tuned for semantic segmentation by exploiting intermediate features from the encoder with the edge supervision. The ESCs then aggregate the edge knowledge with multi-level decoder features to learn a hierarchy of discriminative features explicitly modeling complementarity between organs' interiors and edges for segmentation. We conduct extensive experiments on two challenging abdominal CT datasets with eight annotated organs. Experimental results show that the proposed network outperforms several state-of-the-art models, especially for the segmentation of small and complicated structures (gallbladder, esophagus, stomach, pancreas and duodenum). The code will be publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源