论文标题

快速,高质量的图像通过可延展的卷积降级

Fast and High-Quality Image Denoising via Malleable Convolutions

论文作者

Jiang, Yifan, Wronski, Bartlomiej, Mildenhall, Ben, Barron, Jonathan T., Wang, Zhangyang, Xue, Tianfan

论文摘要

大多数图像Denoising网络在整个输入图像中应用一组静态卷积内核。这对于自然图像来说是最佳的,因为它们通常由异质的视觉模式组成。动态卷积试图通过使用每像素卷积内核来解决此问题,但这大大提高了计算成本。在这项工作中,我们提出了可延展的卷积(Malleconv),该卷积通过最小的计算开销执行空间变化的处理。 Malleconv使用一组较小的空间变化卷积内核,这是静态和每个像素卷积内核之间的折衷。这些在空间上变化的内核是由在下采样的输入下运行的有效预测网络产生的,这使得它们比完整分辨率图像产生的每个像素内核更有效地计算,并且还扩大了与静态核相比,网络的接受场更大。然后,将这些内核共同采样,并通过有效的在线切片操作员使用,并将其应用于全分辨率的特征映射。为了证明Malleconv的有效性,我们使用它来构建一个称为Mallenet的有效的DeNoising网络。 Mallenet在没有非常深的体系结构的情况下取得了高质量的效果,使其比最佳性能的DeNo算法快8.9倍,同时达到相似的视觉质量。我们还表明,添加到标准的基于卷积的主链中的单个Malleconv层可以显着降低计算成本或以类似成本提高图像质量。更多信息在我们的项目页面上:\ url {https://yifanjiang.net/malleconv.html}

Most image denoising networks apply a single set of static convolutional kernels across the entire input image. This is sub-optimal for natural images, as they often consist of heterogeneous visual patterns. Dynamic convolution tries to address this issue by using per-pixel convolution kernels, but this greatly increases computational cost. In this work, we present Malleable Convolution (MalleConv), which performs spatial-varying processing with minimal computational overhead. MalleConv uses a smaller set of spatially-varying convolution kernels, a compromise between static and per-pixel convolution kernels. These spatially-varying kernels are produced by an efficient predictor network running on a downsampled input, making them much more efficient to compute than per-pixel kernels produced by a full-resolution image, and also enlarging the network's receptive field compared with static kernels. These kernels are then jointly upsampled and applied to a full-resolution feature map through an efficient on-the-fly slicing operator with minimum memory overhead. To demonstrate the effectiveness of MalleConv, we use it to build an efficient denoising network we call MalleNet. MalleNet achieves high-quality results without very deep architectures, making it 8.9x faster than the best performing denoising algorithms while achieving similar visual quality. We also show that a single MalleConv layer added to a standard convolution-based backbone can significantly reduce the computational cost or boost image quality at a similar cost. More information is on our project page: \url{https://yifanjiang.net/MalleConv.html}

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源