论文标题

两种模式挤压状态定量和半古典肖像

Two-mode squeezed state quantisation and semiclassical portraits

论文作者

Gazeau, Jean-Pierre, Hussin, Véronique, Moran, James, Zelaya, Kevin

论文摘要

使用高斯类型状态的定量比其他定量方案具有某些优势,特别是它们可以使正式的不连续的经典功能正规化,从而导致定义明确的量子运算符。在这项工作中,我们使用几个挤压状态族的单模式配置定义了两个维度的挤压状态定量。利用挤压状态的完整关系,以解决具有谐波潜力的受约束位置依赖性质量模型的定量和半经典分析。研究了挤压参数对所得运算符和相位空间功能的影响,并比较了经典模型和半经典模型之间的配置空间轨迹。

Quantisation with Gaussian type states offers certain advantages over other quantisation schemes, in particular, they can serve to regularise formally discontinuous classical functions leading to well defined quantum operators. In this work we define a squeezed state quantisation in two dimensions using several families of squeezed states for one- and two-mode configurations. The completeness relations of the squeezed states are exploited in order to tackle the quantisation and semiclassical analysis of a constrained position dependent mass model with harmonic potential. The effects of the squeezing parameters on the resulting operators and phase space functions are studied, and configuration space trajectories are compared between the classical and semiclassical models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源