论文标题

学习有限角层析成像的微局部先验

Learning a microlocal prior for limited-angle tomography

论文作者

Rautio, Siiri, Murthy, Rashmi, Bubba, Tatiana A., Lassas, Matti, Siltanen, Samuli

论文摘要

有限角度断层扫描是一个高度不良的线性反问题。它在许多应用中都会出现,例如数字乳房合成。来自限量数据的重建通常会沿着投影的中心方向严重伸展特征,从而导致垂直于中心方向的切片之间的分离差。基于机器学习和几何形状,引入了一种新方法,从而对不同X射线衰减区域之间的接口产生了估计。估计值可以在重建的顶部提出,表明特征的真实形式和范围更可靠。该方法使用定向边缘检测,使用复杂的小波进行实施,并通过形态操作增强。通过使用机器学习,首先提取波前集合的可见部分,然后延伸到整个域,填充波前集的各个部分,否则由于缺乏测量方向而隐藏了这些部分。

Limited-angle tomography is a highly ill-posed linear inverse problem. It arises in many applications, such as digital breast tomosynthesis. Reconstructions from limited-angle data typically suffer from severe stretching of features along the central direction of projections, leading to poor separation between slices perpendicular to the central direction. A new method is introduced, based on machine learning and geometry, producing an estimate for interfaces between regions of different X-ray attenuation. The estimate can be presented on top of the reconstruction, indicating more reliably the true form and extent of features. The method uses directional edge detection, implemented using complex wavelets and enhanced with morphological operations. By using machine learning, the visible part of the wavefront set is first extracted and then extended to the full domain, filling in the parts of the wavefront set that would otherwise be hidden due to the lack of measurement directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源