论文标题
Causalmta:消除用户混淆因果多触摸归因的偏见
CausalMTA: Eliminating the User Confounding Bias for Causal Multi-touch Attribution
论文作者
论文摘要
旨在估算每个广告接触点在转换旅程中的贡献的多点触摸归因(MTA)对于预算分配和自动广告至关重要。现有方法首先训练模型,以通过历史数据来预测广告旅程的转换概率,并使用反事实预测来计算每个接触点的归因。这些作品的假设是转换预测模型是公正的,即,它可以对任何随机分配的旅程(包括事实和反事实)提供准确的预测。然而,由于根据用户的喜好推荐暴露的广告,因此这个假设并不总是存在。用户的这种混淆偏见将导致反事实预测中的分布(OOD)问题,并导致归因的概念漂移。在本文中,我们定义了因果MTA任务,并提出Causalmta来消除用户偏好的影响。它从系统上消除了静态和动态偏好的混杂偏见,以使用历史数据来学习转换预测模型。我们还提供理论分析,以证明Causalmta可以学习具有足够数据的公正预测模型。电子商务公司的公共数据集和印象数据的广泛实验表明,Causalmta不仅比最先进的方法实现了更好的预测性能,而且还可以在不同的广告渠道上产生有意义的属性信用。
Multi-touch attribution (MTA), aiming to estimate the contribution of each advertisement touchpoint in conversion journeys, is essential for budget allocation and automatically advertising. Existing methods first train a model to predict the conversion probability of the advertisement journeys with historical data and calculate the attribution of each touchpoint using counterfactual predictions. An assumption of these works is the conversion prediction model is unbiased, i.e., it can give accurate predictions on any randomly assigned journey, including both the factual and counterfactual ones. Nevertheless, this assumption does not always hold as the exposed advertisements are recommended according to user preferences. This confounding bias of users would lead to an out-of-distribution (OOD) problem in the counterfactual prediction and cause concept drift in attribution. In this paper, we define the causal MTA task and propose CausalMTA to eliminate the influence of user preferences. It systemically eliminates the confounding bias from both static and dynamic preferences to learn the conversion prediction model using historical data. We also provide a theoretical analysis to prove CausalMTA can learn an unbiased prediction model with sufficient data. Extensive experiments on both public datasets and the impression data in an e-commerce company show that CausalMTA not only achieves better prediction performance than the state-of-the-art method but also generates meaningful attribution credits across different advertising channels.