论文标题

使用耦合的分数布朗运动的预期至上的下限

Lower bound for the expected supremum of fractional Brownian motion using coupling

论文作者

Bisewski, Krzysztof

论文摘要

我们为(in)有限的时间范围内(0,1)$ in(0,1)$ in(0,1)$ in(0,1)$ in(0,1)$ hurst index $ h \ in(in)有限的时间范围,我们得出了一个新的理论下限。广泛的仿真实验表明,我们的下边界的表现优于蒙特卡洛估计值,基于$ h \ in(0,\ tfrac {1} {2})$的非常密集的网格。此外,我们得出了线性分数布朗运动的Paley-Wiener-Zygmund表示,并在Bisewski,dębicki&Rolski(20221)的最新工作中为预期的超级衍生物提供了明确的表达。

We derive a new theoretical lower bound for the expected supremum of drifted fractional Brownian motion with Hurst index $H\in(0,1)$ over (in)finite time horizon. Extensive simulation experiments indicate that our lower bound outperforms the Monte Carlo estimates based on very dense grids for $H\in(0,\tfrac{1}{2})$. Additionally, we derive the Paley-Wiener-Zygmund representation of a Linear Fractional Brownian motion and give an explicit expression for the derivative of the expected supremum at $H=\tfrac{1}{2}$ in the sense of recent work by Bisewski, Dębicki & Rolski (2021).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源