论文标题
第一和第二个原理计算的无限层镍化合物的相图
Phase Diagram of Infinite-layer Nickelate Compounds from First- and Second-principles Calculations
论文作者
论文摘要
仔细地重新审视了无限层稀土镍(RNIO2)的基本特性,并将其与cacuo2和rnio3 perovskites的基本特性进行了比较。结合了第一原理和有限温度的第二个原理计算,我们强调说,在结构,电子和磁性水平上,大量的NDNIO2化合物远非等效到CACUO2。从结构上讲,它被证明是旋转偶联诱导的氧平方旋转运动的容易发生的,这可能导致了电阻率的吸引力。在电子和磁性水平上,我们指出具有强大的平面外带分散体的轨道选择性Mott定位,这应该导致各向同性的上临界场以及与平面本地矩和平面外部巡回赛的三维磁相互作用。我们进一步证明,与RNIO3钙钛矿一样,氧旋转运动和稀土离子受控的电子和磁性特性可以使RNIO2化合物成为丰富的相图以及各种吸引力的高可调性。与此一致,我们揭示了高-TC超导体的关键成分,例如轨道极化,费米表面和抗磁相互作用,可以通过外延菌株在NDNIO2中故意控制。可以建立利用应变轨道工程,从三维到二维磁过渡的交叉,然后NDNIO2薄膜成为高-TC蛋糕的真正类似物。
The fundamental properties of infinite-layer rare-earth nickelates (RNiO2) are carefully revisited and compared with those of CaCuO2 and RNiO3 perovskites. Combining first-principles and finite-temperature second-principles calculations, we highlight that bulk NdNiO2 compound are far from equivalent to CaCuO2, together at the structural, electronic, and magnetic levels. Structurally, it is shown to be prone to spin-phonon coupling induced oxygen square rotation motion, which might be responsible for the intriguing upturn of the resistivity. At the electronic and magnetic levels, we point out orbital-selective Mott localization with strong out-of-plane band dispersion, which should result in the isotropic upper critical fields and weakly three-dimensional magnetic interactions with in-plane local moment and out-of-plane itinerant moment. We further demonstrate that as in RNiO3 perovskites, oxygen rotation motion and rare-earth ion controlled electronic and magnetic properties can give rise in RNiO2 compounds to a rich phase diagram and high tunability of various appealing properties. In line with that, we reveal that key ingredients of high-Tc superconductor such as orbital polarization, Fermi surface, and antiferromagnetic interactions can be deliberately controlled in NdNiO2 through epitaxial strain. Exploiting strain-orbital engineering, a crossover from three- to two-dimensional magnetic transition can be established, making then NdNiO2 thin film a true analog of high-Tc cuprates.