论文标题

Grothendieck - 惠特(Witt)一组Henselian评估戒指

Grothendieck--Witt Groups of Henselian Valuation Rings

论文作者

Yagunov, Serge

论文摘要

我们表明,诸如代数$ k $ - 理论(例如统一或符合$ k $ functors)之类的函子以及较高的grothendieck-witt组,具有Henselian评估环的本地恒定状态。也就是说,使用有限的系数拍摄,这些函子将规范残基图发送到同构中。在同等特征和混合特征的情况下,该陈述具有。证明是基于对Suslin方法的稍作修改。特别是,我们使用了他的普遍同质概念。

We show that functors like algebraic $K$-theory (such as unitary or symplectic $K$-functors), as well as the higher Grothendieck--Witt groups, possess the local constancy condition for Henselian valuation rings. Namely, taken with finite coefficients, these functors send canonical residue maps into isomorphisms. This statement holds in cases of both equal and mixed characteristics. The proof is based on a slight modification of Suslin's methods. In particular, we use his notion of universal homotopy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源