论文标题
合作边缘计算中基于能量的比例公平
Energy-based Proportional Fairness in Cooperative Edge Computing
论文作者
论文摘要
通过从移动用户执行卸载任务,Edge Computing Exking Exk Mobile用户设备(UES)使用来自Edge节点(ENS)的计算/通信资源,启用新服务(例如,实时游戏)。但是,尽管比UES更具机智,但将ENS'资源分配给给定有利的用户(例如,靠近ENS)可能会阻止其他UES的服务。对于大多数现有的方法通常是这种情况,仅旨在最大化网络社交福利或最大程度地减少总能源消耗,但不考虑每个UE的计算/电池状态。这项工作开发了一个基于能量的比例 - fair框架,可为所有具有多个任务的用户提供服务,同时考虑其服务需求和能量/电池水平,在多层边缘网络中。卸载任务和将资源分配给任务的最终问题是混合成员非线性编程,即NP-HARD。为了解决这个问题,我们利用了放松的问题是凸面并提出分布式算法的事实,即动态分支和结合的弯曲器分解(DBBD)。 DBBD将原始问题分解为主要问题(MP),用于卸载决策和多个子问题(SPS)用于资源分配。为了快速消除效率低下的卸载解决方案,MP与强大的弯曲者剪裁集成了利用ENS的资源约束。然后,考虑到ENS之间的负载平衡,我们开发了动态分支和结合算法(DBB),以有效地解决MP。可以为其闭合溶液解决SPS,也可以在ENS并行解决,从而降低了复杂性。数值结果表明,DBBD返回最大化UE中比例公平的最佳解决方案。 DBBD具有较高的公平指数,即Ja那教指数和最低最大比率,而与现有的总能量最小化相比。
By executing offloaded tasks from mobile users, edge computing augments mobile user equipments (UEs) with computing/communications resources from edge nodes (ENs), enabling new services (e.g., real-time gaming). However, despite being more resourceful than UEs, allocating ENs' resources to a given favorable set of users (e.g., closer to ENs) may block other UEs from their services. This is often the case for most existing approaches that only aim to maximize the network social welfare or minimize the total energy consumption but do not consider the computing/battery status of each UE. This work develops an energy-based proportional-fair framework to serve all users with multiple tasks while considering both their service requirements and energy/battery levels in a multi-layer edge network. The resulting problem for offloading tasks and allocating resources toward the tasks is a Mixed-Integer Nonlinear Programming, which is NP-hard. To tackle it, we leverage the fact that the relaxed problem is convex and propose a distributed algorithm, namely the dynamic branch-and-bound Benders decomposition (DBBD). DBBD decomposes the original problem into a master problem (MP) for the offloading decisions and multiple subproblems (SPs) for resource allocation. To quickly eliminate inefficient offloading solutions, MP is integrated with powerful Benders cuts exploiting the ENs' resource constraints. We then develop a dynamic branch-and-bound algorithm (DBB) to efficiently solve MP considering the load balance among ENs. SPs can either be solved for their closed-form solutions or be solved in parallel at ENs, thus reducing the complexity. The numerical results show that DBBD returns the optimal solution in maximizing the proportional fairness among UEs. DBBD has higher fairness indexes, i.e., Jain's index and min-max ratio, in comparison with the existing ones that minimize the total consumed energy.