论文标题

神经网络学习的不可行视图

An unfeasability view of neural network learning

论文作者

Heintz, Joos, Ocar, Hvara, Pardo, Luis Miguel, Paredes, Andres Rojas, Segura, Enrique Carlos

论文摘要

我们为多层神经网络体系结构定义了连续可区分的完美学习算法的概念,并表明如果数据集的长度超过涉及参数的数量,并且激活函数是逻辑,Tanh或sin。

We define the notion of a continuously differentiable perfect learning algorithm for multilayer neural network architectures and show that such algorithms don't exist provided that the length of the data set exceeds the number of involved parameters and the activation functions are logistic, tanh or sin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源