论文标题
单体重组中的三体重组与$ p $ - 波互动
Three-body recombination in a single-component Fermi gas with $p$-wave interaction
论文作者
论文摘要
我们研究了相同的费米原子的三体重组。使用$ p $ - 波互动的零范围模型,我们表明,三体重组为弱绑定的$ p $ - 波 - 波二聚体的速率常数可以写为$α_ {\ rm rec rec} \ propto v^{5/2} r^{1/2} r^{1/2} k_t} k_t^4(1/2} k_t^4(1+ c k_t^2 l l y)散射卷$ v $。这里$ r $是$ p $ - 波的有效范围,$ k_t^2 $给出了碰撞原子的平均热动能,而$ l _ {\ rm d} $是$ p $ -Wave Dimer的大小。主术语与通常说明的$ v^{8/3} $ - 缩放定律不同,但与较早的两通道计算一致。对于转标期,我们通过在参数$γ\ equiv r/v^{1/3} $较小时扰动相关的三体问题来计算常数$ c $。附加的$ c k_t^2 l _ {\ rm d}^2 $项为$α_ {\ rm rec} $的温度和相互作用依赖性提供了重要的更正,尤其是当$ k_t l _ {\ rm d} $相对较大时,尤其是接近共振。
We study the three-body recombination of identical fermionic atoms. Using a zero-range model for the $p$-wave interaction, we show that the rate constant of three-body recombination into weakly bound $p$-wave dimers can be written as $α_{\rm rec} \propto v^{5/2}R^{1/2} k_T^4 (1+ C k_T^2 l_{\rm d}^2)$ for large and positive scattering volume $v$. Here $R$ is the $p$-wave effective range, $k_T^2$ gives the average thermal kinetic energy of the colliding atoms, and $l_{\rm d}$ is the size of the $p$-wave dimer. The leading term is different from the usually stated $v^{8/3}$-scaling law, but is consistent with an earlier two-channel calculation. For the subleading term, we compute the constant $C$ by solving the relevant three-body problem perturbatively when the parameter $γ\equiv R/v^{1/3}$ is small. The additional $C k_T^2 l_{\rm d}^2$ term provides important corrections for the temperature and interaction dependence of $α_{\rm rec}$, especially close to resonance when $k_T l_{\rm d}$ is relatively large.