论文标题

部分可观测时空混沌系统的无模型预测

Attention Mechanism Meets with Hybrid Dense Network for Hyperspectral Image Classification

论文作者

Ahmad, Muhammad, Khan, Adil Mehmood, Mazzara, Manuel, Distefano, Salvatore, Roy, Swalpa Kumar, Wu, Xin

论文摘要

确实,卷积神经网络(CNN)更合适。但是,固定的内核尺寸使传统的CNN过于具体,既不灵活也不有利于特征学习,从而影响了分类准确性。不同内核大小网络的卷积可以通过捕获更多区分和相关信息来克服此问题。鉴于此,提出的解决方案旨在将3D和2D Inception Net的核心思想与注意力机制相结合,以在混合情况下提高HSIC CNN性能。所得的\ textIt {注意拟合的混合网络}(AFNET)基于三个关注的平行混合子网,每个块中有不同的内核反复使用高级特征来增强最终的地面真实图。简而言之,AFNET能够选择性地滤除分类至关重要的判别特征。与最先进的模型相比,对HSI数据集的几项测试为AFNET提供了竞争性结果。确实,印度松树的总体准确度为97%,博茨瓦纳的总体准确性为97%,帕维亚大学,帕维亚中心和萨利纳斯数据集为99 \%。

Convolutional Neural Networks (CNN) are more suitable, indeed. However, fixed kernel sizes make traditional CNN too specific, neither flexible nor conducive to feature learning, thus impacting on the classification accuracy. The convolution of different kernel size networks may overcome this problem by capturing more discriminating and relevant information. In light of this, the proposed solution aims at combining the core idea of 3D and 2D Inception net with the Attention mechanism to boost the HSIC CNN performance in a hybrid scenario. The resulting \textit{attention-fused hybrid network} (AfNet) is based on three attention-fused parallel hybrid sub-nets with different kernels in each block repeatedly using high-level features to enhance the final ground-truth maps. In short, AfNet is able to selectively filter out the discriminative features critical for classification. Several tests on HSI datasets provided competitive results for AfNet compared to state-of-the-art models. The proposed pipeline achieved, indeed, an overall accuracy of 97\% for the Indian Pines, 100\% for Botswana, 99\% for Pavia University, Pavia Center, and Salinas datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源