论文标题

在Sobolev-Orlicz空间中具有可变指数的Sobolev-Orlicz空间中的单个双相的解决方案的存在

Existence of solutions for a singular double phase in Sobolev-Orlicz spaces with variable exponents in a complete manifold

论文作者

Aberqi, Ahmed, Bennouna, Jaouad, Benslimane, Omar, Ragusa, Maria Alessandra

论文摘要

本文的目的是研究一类双相问题,右侧具有单数项和超线性参数项。使用Nehari歧管的方法与光纤图相结合,我们证明,对于参数λ> 0的所有小值,至少存在两个非平凡的阳性溶液。我们的结果从Musielak-Orlicz Sobolev Space不变时,将先前的作品扩展了Papageorgiou,Repovus和Vetro [24]和Liu,dai,dai,papageorgiou和Winkert [21] [21]。

The purpose of this paper is to study a class of double phase problems, with a singular term and a superlinear parametric term on the right-hand side. Using the method of Nehari manifold combined with the fibering maps, we prove that for all small values of the parameter λ > 0, there exist at least two non-trivial positive solutions. Our results extend the previous works Papageorgiou, Repovus, and Vetro [24] and Liu, Dai, Papageorgiou, and Winkert [21], from the case of Musielak-Orlicz Sobolev space, when exponents p and q are constant, to the case of Sobolev-Orlicz spaces with variable exponents in a complete manifold.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源