论文标题
关于本地模型的$ p $ - 阿迪亚理论
On the $p$-adic theory of local models
论文作者
论文摘要
在这种情况下,我们证明了有关局部Shimura品种的本地模型的存在和唯一性的静脉 - 韦恩斯坦的猜想 - 在这种情况下。为了实现这一目标,我们建立了行为良好的$ p $ addic金伯利特人的专业原理,表明这些原则包括V-sheaf本地型号,使用双曲线定位确定其特殊纤维,以用于小型V堆的奇学共同体,并使用卷积分析产生的专业形态。
We prove the Scholze--Weinstein conjecture on the existence and uniqueness of local models of local Shimura varieties and the test function conjecture of Haines--Kottwitz in this setting. In order to achieve this, we establish the specialization principle for well-behaved $p$-adic kimberlites, show that these include the v-sheaf local models, determine their special fibers using hyperbolic localization for the étale cohomology of small v-stacks and analyze the resulting specialization morphism using convolution.