论文标题
部分可观测时空混沌系统的无模型预测
Self-directed Machine Learning
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Conventional machine learning (ML) relies heavily on manual design from machine learning experts to decide learning tasks, data, models, optimization algorithms, and evaluation metrics, which is labor-intensive, time-consuming, and cannot learn autonomously like humans. In education science, self-directed learning, where human learners select learning tasks and materials on their own without requiring hands-on guidance, has been shown to be more effective than passive teacher-guided learning. Inspired by the concept of self-directed human learning, we introduce the principal concept of Self-directed Machine Learning (SDML) and propose a framework for SDML. Specifically, we design SDML as a self-directed learning process guided by self-awareness, including internal awareness and external awareness. Our proposed SDML process benefits from self task selection, self data selection, self model selection, self optimization strategy selection and self evaluation metric selection through self-awareness without human guidance. Meanwhile, the learning performance of the SDML process serves as feedback to further improve self-awareness. We propose a mathematical formulation for SDML based on multi-level optimization. Furthermore, we present case studies together with potential applications of SDML, followed by discussing future research directions. We expect that SDML could enable machines to conduct human-like self-directed learning and provide a new perspective towards artificial general intelligence.