论文标题
变形的Hermitian-yang-米尔斯方程,altivstellensatz和可溶性
The Deformed Hermitian--Yang--Mills Equation, the Positivstellensatz, and the Solvability
论文作者
论文摘要
令$(m,ω)$为复合尺寸四的紧凑连接的kähler歧管,让$ [χ] \ in H^{1,1}(M; \ Mathbb {r})$中的$ [χ] \。我们证实了Collins-Jacob-Yau [Arxiv:1508.01934]的猜想,证明了变形的Hermitian-yang-mills方程的可溶性,该方程式由以下非线性椭圆方程$ \ sum_ sum_ sum_ {i} {i} \ arctan(λ_i)$ y $ y $ a $ a $ a $ a $ a $ a.对$ω$和$ \hatθ$是拓扑常数。该猜想在[arxiv:1508.01934]中说明,其中他们证明存在超批判性$ c $ -subsondolution或$ c $ -suboslution当$ \hatθ\ in [((n-2} + {2}/{n})/{n}/{n})five prives us f in $ \hatθ\ in [(n-2}/{n}) Hermitian-yang-米尔斯方程。 Collins - Jacob-Yau猜想,当$ \hatθ\ in(((n-2)π/{2}},((n-2) + {2}/{n})π/{2})$ n $ n $是流形的复杂尺寸,可以改善其存在定理。在本文中,我们确认他们的猜想是,当复数等于四和$ \hatθ$接近右边的超临界相$π$时,那么存在$ c $ -subsolution的存在就意味着变形的Hermitian-yang-mills方程。
Let $(M, ω)$ be a compact connected Kähler manifold of complex dimension four and let $[χ] \in H^{1,1}(M; \mathbb{R})$. We confirmed the conjecture by Collins--Jacob--Yau [arXiv:1508.01934] of the solvability of the deformed Hermitian--Yang--Mills equation, which is given by the following nonlinear elliptic equation $\sum_{i} \arctan (λ_i) = \hatθ$, where $λ_i$ are the eigenvalues of $χ$ with respect to $ω$ and $\hatθ$ is a topological constant. This conjecture was stated in [arXiv:1508.01934], wherein they proved that the existence of a supercritical $C$-subsolution or the existence of a $C$-suboslution when $\hatθ \in [ ( (n-2) + {2}/{n} ) π/{2}, nπ/2 )$ will give the solvability of the deformed Hermitian--Yang--Mills equation. Collins--Jacob--Yau conjectured that their existence theorem can be improved when $\hatθ \in ( (n-2 ) π/{2}, ( (n-2) + {2}/{n} ) π/{2} )$, where $n$ is the complex dimension of the manifold. In this paper, we confirmed their conjecture that when the complex dimension equals four and $\hatθ$ is close to the supercritical phase $π$ from the right, then the existence of a $C$-subsolution implies the solvability of the deformed Hermitian--Yang--Mills equation.