论文标题
利用大量物联网连接中的时间侧信息
Exploiting Temporal Side Information in Massive IoT Connectivity
论文作者
论文摘要
本文考虑了大量物联网(IoT)连接系统中的联合设备活动检测和通道估计问题,其中存在大量的物联网设备,但仅一个随机子集在每个相干块中的短包传输中都变得有效。特别是,我们建议利用设备活动中的时间相关性,例如,在先前的连贯块中活跃的设备更有可能在当前相干块中活跃,以提高检测和估计性能。但是,将这种时间相关性用作侧面信息(SI)是一项挑战,它取决于对先前相干块的估计活动模式之间确切的统计关系的知识(这可能与未知的误差不完美)和当前相干性块中的真实活动模式。为了应对这一挑战,我们建立了一个新型的Si-AID多重测量矢量近似消息传递(MMV-AMP)框架。具体而言,由于MMV-AMP算法的状态演变,MMV-AMP算法在先前的相干块中估计的活性模式与当前相干块中的真实活动模式之间的相关性是明确量化的。基于定义明确的时间相关性,我们将此有用的SI进一步嵌入到MMV-AMP框架下的Denoiser设计中。具体而言,具有二进制阈值的基于SI的软阈值DENOISER和基于SI的最小于点误差(MMSE)DENOISER的表征分别在没有频道分布的情况下进行了特征。给出数值结果,以显示我们提出的Si-ADED MMV-AMP框架带来的设备活性检测和通道估计性能的显着增益。
This paper considers the joint device activity detection and channel estimation problem in a massive Internet of Things (IoT) connectivity system, where a large number of IoT devices exist but merely a random subset of them become active for short-packet transmission in each coherence block. In particular, we propose to leverage the temporal correlation in device activity, e.g., a device active in the previous coherence block is more likely to be still active in the current coherence block, to improve the detection and estimation performance. However, it is challenging to utilize this temporal correlation as side information (SI), which relies on the knowledge about the exact statistical relation between the estimated activity pattern for the previous coherence block (which may be imperfect with unknown error) and the true activity pattern in the current coherence block. To tackle this challenge, we establish a novel SI-aided multiple measurement vector approximate message passing (MMV-AMP) framework. Specifically, thanks to the state evolution of the MMV-AMP algorithm, the correlation between the activity pattern estimated by the MMV-AMP algorithm in the previous coherence block and the real activity pattern in the current coherence block is quantified explicitly. Based on the well-defined temporal correlation, we further manage to embed this useful SI into the denoiser design under the MMV-AMP framework. Specifically, the SI-based soft-thresholding denoisers with binary thresholds and the SI-based minimum mean-squared error (MMSE) denoisers are characterized for the cases without and with the knowledge of the channel distribution, respectively. Numerical results are given to show the significant gain in device activity detection and channel estimation performance brought by our proposed SI-aided MMV-AMP framework.