论文标题

与时间变化系数相关的对流扩散反应方程的型号订购降低:应用于实时水质监测

Model Order Reduction of The Time-Dependent Advection-Diffusion-Reaction Equation with Time-Varying Coefficients: Application to Real-Time Water Quality Monitoring

论文作者

Elkhashap, Ahmed, Abel, Dirk

论文摘要

对流扩散反应(ADR)部分微分方程(PDE)出现在各种应用中,例如化学反应器,浓度流和生物系统。这些应用中的许多应用都需要涉及时变系数的ADR方程,其中分析溶液通常是棘手的。另一方面,数值解决方案需要精细的离散化,并且在计算上非常苛刻。因此,这些模型通常不适合实时监控和控制目的。在此贡献中,提出了一种具有时变系数的通用ADR系统的订购建模方法。通过使用H2-Norm还原方法,可以实现有关还原诱导误差的减少订单模型的最佳性。使用两个测试用例证明了该方法的功效。也就是说,具有随机生成需求的示例性水质分布路径的模型,包括具有任意动力学变化系数的ADR的案例和第二种情况。使用MATLAB的有限元方法PDE工具箱对降低的订单模型进行了评估。结果表明,还原可以实现明显的计算加速,允许使用该模型以毫秒为单位的采样时间用于实时应用。此外,对于现实世界中水质仿真测试案例,构造的ROM被证明可以实现高预测准确性,而均衡的均方误差低于2.3%。

Advection-Diffusion-Reaction (ADR) Partial Differential Equations (PDEs) appear in a wide spectrum of applications such as chemical reactors, concentration flows, and biological systems. A large number of these applications require the solution of ADR equations involving time-varying coefficients, where analytical solutions are usually intractable. Numerical solutions on the other hand require fine discretization and are computationally very demanding. Consequently, the models are normally not suitable for real-time monitoring and control purposes. In this contribution, a reduced order modeling method for a general ADR system with time-varying coefficients is proposed. Optimality of the reduced order model regarding the reduction induced error is achieved by using an H2-norm reduction method. The efficacy of the method is demonstrated using two test cases. Namely, a case for an ADR with arbitrary dynamics varying coefficients and a second case including the modeling of an exemplary water quality distribution path with randomly generated demand. The reduced order models are evaluated against high fidelity simulations using MATLAB's finite element method PDE toolbox. It is shown that the reduction can achieve a significant computational speedup allowing for the usage of the model for real-time applications with sampling times in milliseconds range. Moreover, the constructed ROM is shown to achieve high prediction accuracy with the normalized mean square error below 2.3 % for a real-world water quality simulation test case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源