论文标题
基本粒子过程的量子整合
Quantum integration of elementary particle processes
论文作者
论文摘要
我们将量子整合应用于基本粒子物理过程。特别是,我们考虑散射过程,例如$ {\ rm e}^+{\ rm e}^ - \ to q \ bar q $和$ {\ rm e}^+{\ rm e}^ - \ to q \ bar q'{\ rm w} $。可以首先使用量子生成对抗网络或精确方法在量子计算机上适当地加载相应的概率分布。然后集成分布的量子幅度估计方法,该方法显示了相对于经典技术的二次加速。在对无噪声量子计算机的模拟中,我们获得了每秒钟和二维整合的每一级准确结果,最多六个QUB。这项工作铺平了利用量子算法来整合高能过程的方法。
We apply quantum integration to elementary particle-physics processes. In particular, we look at scattering processes such as ${\rm e}^+{\rm e}^- \to q \bar q$ and ${\rm e}^+{\rm e}^- \to q \bar q' {\rm W}$. The corresponding probability distributions can be first appropriately loaded on a quantum computer using either quantum Generative Adversarial Networks or an exact method. The distributions are then integrated sing the method of Quantum Amplitude Estimation which shows a quadratic speed-up with respect to classical techniques. In simulations of noiseless quantum computers, we obtain per-cent accurate results for one- and two-dimensional integration with up to six qubits. This work paves the way towards taking advantage of quantum algorithms for the integration of high-energy processes.