论文标题

基于灵敏度的动态性能评估模型预测控制,高斯噪声

Sensitivity-based dynamic performance assessment for model predictive control with Gaussian noise

论文作者

Liu, Jiangbang, Bo, Song, Decardi-Nelson, Benjamin, Liu, Jinfeng, Hu, Jingtao, Zou, Tao

论文摘要

经济模型预测控制和跟踪模型预测性控制是两个流行的高级过程控制策略。然而,在设计控制系统时,应选择哪一个在噪声存在下取得更好的性能是不确定的。为此,提出了一种基于灵敏度的绩效评估方法,以预先评估这项工作中的动态经济和跟踪性能。首先,通过计算相应约束动态编程问题的敏感性来评估其控制器围绕最佳稳态的收益。其次,将控制器的增益取代为控制回路,以得出过程和测量噪声的传播。随后,引入了泰勒的扩展,以简化每个变量的方差和平均值的计算。最后,绘制了跟踪和经济性能表面,并通过整合目标函数和概率密度函数来精确计算性能指数。此外,可以预先配置边界移动(即返回)和目标移动,以确保使用所提出的方法保证受控过程的稳定性。在不同情况下进行的大量模拟说明了所提出的方法可以为绩效评估和控制器设计提供有用的指导。

Economic model predictive control and tracking model predictive control are two popular advanced process control strategies used in various of fields. Nevertheless, which one should be chosen to achieve better performance in the presence of noise is uncertain when designing a control system. To this end, a sensitivity-based performance assessment approach is proposed to pre-evaluate the dynamic economic and tracking performance of them in this work. First, their controller gains around the optimal steady state are evaluated by calculating the sensitivities of corresponding constrained dynamic programming problems. Second, the controller gains are substituted into control loops to derive the propagation of process and measurement noise. Subsequently, the Taylor expansion is introduced to simplify the calculation of variance and mean of each variable. Finally, the tracking and economic performance surfaces are plotted and the performance indices are precisely calculated through integrating the objective functions and the probability density functions. Moreover, boundary moving (i.e., back off) and target moving can be pre-configured to guarantee the stability of controlled processes using the proposed approach. Extensive simulations under different cases illustrate the proposed approach can provide useful guidance on performance assessment and controller design.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源