论文标题

POCO:表面重建的点卷积

POCO: Point Convolution for Surface Reconstruction

论文作者

Boulch, Alexandre, Marlet, Renaud

论文摘要

隐式神经网络已成功地用于点云的表面重建。但是,其中许多人在将整个对象或场景的等法函数编码为单个潜在向量时面临可扩展性问题。为了克服这一限制,一些方法在粗糙的常规3D网格或3D贴片上推断潜在向量,然后插入它们以回答占用查询。在这样做时,他们将直接连接与对象表面上采样的输入点的直接连接,并且它们在空间中均匀地附加信息,而不是最重要的地方,即在表面附近。此外,依靠固定贴片大小可能需要调整。为了解决这些问题,我们建议在每个输入点使用点云卷积并计算潜在向量。然后,我们使用推断的权重对最近的邻居进行基于学习的插值。对象和场景数据集的实验表明,我们的方法在大多数经典指标上的其他方法都大大优于其他方法,从而产生更细节的细节并更好地重建较薄的量。该代码可在https://github.com/valeoai/poco上找到。

Implicit neural networks have been successfully used for surface reconstruction from point clouds. However, many of them face scalability issues as they encode the isosurface function of a whole object or scene into a single latent vector. To overcome this limitation, a few approaches infer latent vectors on a coarse regular 3D grid or on 3D patches, and interpolate them to answer occupancy queries. In doing so, they loose the direct connection with the input points sampled on the surface of objects, and they attach information uniformly in space rather than where it matters the most, i.e., near the surface. Besides, relying on fixed patch sizes may require discretization tuning. To address these issues, we propose to use point cloud convolutions and compute latent vectors at each input point. We then perform a learning-based interpolation on nearest neighbors using inferred weights. Experiments on both object and scene datasets show that our approach significantly outperforms other methods on most classical metrics, producing finer details and better reconstructing thinner volumes. The code is available at https://github.com/valeoai/POCO.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源