论文标题
NeuralMLS:几何感知控制点变形
NeuralMLS: Geometry-Aware Control Point Deformation
论文作者
论文摘要
我们介绍了神经mls,这是一种基于空间的变形技术,以一组流离失所的控制点为指导。我们利用神经网络的力量将基本形状的几何形状注入变形参数。我们技术的目的是实现现实而直观的形状变形。我们的方法建立在移动最小二乘(MLS)的基础上,因为它可以最大程度地减少给定控制点位移的加权总和。传统上,每个控制点对空间每个点(即加权函数)的影响是使用反距离启发式方法定义的。在这项工作中,我们选择通过从单个输入形状训练控制点的神经网络,并利用神经网络的先天平滑度来学习加权函数。我们的几何感知控制点变形对表面表示和质量不可知。它可以应用于点云或网格,包括非杂志和断开的表面汤。我们表明,我们的技术有助于直观的分段光滑变形,非常适合制造物体。与现有的表面和基于空间的变形技术相比,我们显示了方法的优势。
We introduce NeuralMLS, a space-based deformation technique, guided by a set of displaced control points. We leverage the power of neural networks to inject the underlying shape geometry into the deformation parameters. The goal of our technique is to enable a realistic and intuitive shape deformation. Our method is built upon moving least-squares (MLS), since it minimizes a weighted sum of the given control point displacements. Traditionally, the influence of each control point on every point in space (i.e., the weighting function) is defined using inverse distance heuristics. In this work, we opt to learn the weighting function, by training a neural network on the control points from a single input shape, and exploit the innate smoothness of neural networks. Our geometry-aware control point deformation is agnostic to the surface representation and quality; it can be applied to point clouds or meshes, including non-manifold and disconnected surface soups. We show that our technique facilitates intuitive piecewise smooth deformations, which are well suited for manufactured objects. We show the advantages of our approach compared to existing surface and space-based deformation techniques, both quantitatively and qualitatively.