论文标题
Simplicial Cascades由神经元复合物的多维几何形状策划
Simplicial cascades are orchestrated by the multidimensional geometry of neuronal complexes
论文作者
论文摘要
级联反应在许多情况下出现(例如,神经元素,社会传染和系统失败)。尽管传播通常涉及高阶依赖性,但级联理论主要集中在成对/二元相互作用的模型上。在这里,我们开发了一个简单级别的阈值模型(STM),用于编码二元,三联和高阶相互作用的简单络合物。我们研究了``小世界''模型的STM Cascades,这些模型既包含短期和远程$ k $ simplices,探讨了时空模式如何表现为局部和非局部传播之间的挫败感。我们表明,高阶耦合和非线性阈值可以协调以稳健的指导级联,并沿着我们称为$ k $维的路径的简单化级别化``几何通道''。我们还发现这种协调性,以增强级联反应的多样性和效率,即神经元网络的基于简单复杂的模型。我们通过分叉理论和基于潜在几何形状的数据驱动方法来支持这些发现。我们的发现和数学技术为揭示了策划非线性级联时空模式的多尺度,多维机制提供了富有成果的方向。
Cascades arise in many contexts (e.g., neuronal avalanches, social contagions, and system failures). Despite evidence that propagations often involve higher-order dependencies, cascade theory has largely focused on models with pairwise/dyadic interactions. Here, we develop a simplicial threshold model (STM) for nonlinear cascades over simplicial complexes that encode dyadic, triadic and higher-order interactions. We study STM cascades over ``small-world'' models that contain both short- and long-range $k$-simplices, exploring how spatio-temporal patterns manifest as a frustration between local and nonlocal propagations. We show that higher-order coupling and nonlinear thresholding can coordinate to robustly guide cascades along a simplicial-generalization of paths that we call $k$-dimensional ``geometrical channels''. We also find this coordination to enhance the diversity and efficiency of cascades over a ``neuronal complex'', i.e., a simplicial-complex-based model for a neuronal network. We support these findings with bifurcation theory and a data-driven approach based on latent geometry. Our findings and mathematical techniques provide fruitful directions for uncovering the multiscale, multidimensional mechanisms that orchestrate the spatio-temporal patterns of nonlinear cascades.