论文标题
为什么在这里这么热?探索$ \ textit {spitzer} $使用特定于行星特定自搭配大气模型的热排放观察的人口趋势
Why is it So Hot in Here? Exploring Population Trends in $\textit{Spitzer}$ Thermal Emission Observations of Hot Jupiters using Planet-Specific Self-Consistent Atmospheric Models
论文作者
论文摘要
现在已经从数十个系外行星的大气中观察到热发射,从而为人口级特征打开了门户。在这里,我们为$ \ textit {spitzer} $ IRAC频道1(3.6 $μm$)和第2频道(4.5 $μm$)的光度法Eclipse Depths(EDS)中观察到的趋势提供了理论说明。我们采用特定于行星的自洽大气模型,涵盖了一系列再循环因子,金属度和C/O比,以探测整个热jupiter种群中$ \ textit {spitzer} $ sicpecary eclipse观测的信息内容。我们表明,仅$ \ textit {spitzer} $观测值的黑体与黑体不一致。我们证明,大多数热木星与白天和夜间之间的低能量再分配是一致的(比预期的,有效再循环比预期的比预期的)。我们还看到,与低温行星相比,高平衡温度行星(T $ _ {eq} $ $ \ ge $ 1800 K)偏爱效率低下的再循环。我们的星球特异性模型并未揭示具有当前数据精度的金属性和C/O比的任何确定的人口趋势,但是我们的样本量的59%以上与C/O比率$ \ leq $ 1和35%一致(0.35 $ \ leq $ c/o $ $ $ $ \ leq $ \ leq $ \ $ \ $ \ $ \ $ 1.5)。我们还发现,对于我们的样本中的大多数行星,3.6和4.5 $ $ $ $ $型号的EDS位于$ \ pm的$ \ pm $ 1 $σ$之内。有趣的是,很少有热木星表现出比我们网格中最热的大气模型(最低再循环)所预测的热发射更大。将需要对詹姆斯·韦伯(James Webb)太空望远镜的热木星的热发射进行未来的光谱观察,以稳健地识别化学成分中的人口趋势,其光谱分辨率增加,范围和数据精度。
Thermal emission has now been observed from many dozens of exoplanet atmospheres, opening the gateway to population-level characterization. Here, we provide theoretical explanations for observed trends in $\textit{Spitzer}$ IRAC channel 1 (3.6 $μm$) and channel 2 (4.5 $μm$) photometric eclipse depths (EDs) across a population of 34 hot Jupiters. We apply planet-specific, self-consistent atmospheric models, spanning a range of recirculation factors, metallicities, and C/O ratios, to probe the information content of $\textit{Spitzer}$ secondary eclipse observations across the hot-Jupiter population. We show that most hot Jupiters are inconsistent with blackbodies from $\textit{Spitzer}$ observations alone. We demonstrate that the majority of hot Jupiters are consistent with low energy redistribution between the dayside and nightside (hotter dayside than expected with efficient recirculation). We also see that high equilibrium temperature planets (T$_{eq}$ $\ge$ 1800 K) favor inefficient recirculation in comparison to the low temperature planets. Our planet-specific models do not reveal any definitive population trends in metallicity and C/O ratio with current data precision, but more than 59 % of our sample size is consistent with the C/O ratio $\leq$ 1 and 35 % are consistent with whole range (0.35 $\leq$ C/O $\leq$ 1.5). We also find that for most of the planets in our sample, 3.6 and 4.5 $μm$ model EDs lie within $\pm$1 $σ$ of the observed EDs. Intriguingly, few hot Jupiters exhibit greater thermal emission than predicted by the hottest atmospheric models (lowest recirculation) in our grid. Future spectroscopic observations of thermal emission from hot Jupiters with the James Webb Space Telescope will be necessary to robustly identify population trends in chemical compositions with its increased spectral resolution, range and data precision.