论文标题

双层选民模型:在意见动态中建模不耐受/宽容的位置和机器人

Bi-layer voter model: Modeling intolerant/tolerant positions and bots in opinion dynamics

论文作者

Vega-Oliveros, Didier A., Grande, Helder L. C., Iannelli, Flavio, Vazquez, Federico

论文摘要

在社交网络中观点的传播是采用立场并吸引政治运动中潜在选民的相关过程。意见极化,偏见,有针对性的扩散和姿势的激进化是理解投票动态的关键要素。特别是,社交机器人是一个新元素,可以对选举期间在社交网络中创建伪造帐户以操纵选举时产生明显的影响。在这里,我们提出了一个在决策过程中纳入机器人以及激进或不宽容的个人的选民模型。系统的动力学出现在由两层组成的相互作用代理的多重网络中,一个是针对观点的动力学,在该网络中,代理在两个可能的替代方案之间进行选择,另一个用于公差动力学,其中代理采用两个公差水平之一。容忍度解释了在互动中改变意见的可能性,宽容(不宽容的)代理商以$ 1.0 $($γ\ le 1 $)切换意见。我们发现,在初始阶段,不耐受会导致宽容的代理人达成共识,该阶段的缩放为$τ^+ \ simγ^{ - 1} \ ln n $,然后在第二阶段,在第二阶段,在$τ\ sim n $的第二阶段达成意见共识,其中$ n $是$ n $ n $ agents的数量。因此,非常不宽容的代理($γ\ ll 1 $)可能会大大减慢对最终共识状态的动力。我们还发现,包含一个分数$σ_ {\ Mathbb {b}}^ - bot的$打破了两种意见之间的对称性,将系统驱动到与机器人意见的不耐受剂的共识。因此,机器人最终将他们的意见强加给整个人口,在缩放为$τ_b^ - \ simγ^{ - 1} $的时代,对于$γ\ llσ_{\ Mathbb {b}}}^ - $和$τ_b^ - $τ_b^ - \ sim 1/\ sim 1/σ__{ $σ_ {\ mathbb {b}}}^ - \llγ$。

The diffusion of opinions in Social Networks is a relevant process for adopting positions and attracting potential voters in political campaigns. Opinion polarization, bias, targeted diffusion, and the radicalization of postures are key elements for understanding voting dynamics. In particular, social bots are a new element that can have a pronounced effect on the formation of opinions during elections by, for instance, creating fake accounts in social networks to manipulate elections. Here we propose a voter model incorporating bots and radical or intolerant individuals in the decision-making process. The dynamics of the system occur in a multiplex network of interacting agents composed of two layers, one for the dynamics of opinions where agents choose between two possible alternatives, and the other for the tolerance dynamics, in which agents adopt one of two tolerance levels. The tolerance accounts for the likelihood to change opinion in an interaction, with tolerant (intolerant) agents switching opinion with probability $1.0$ ($γ\le 1$). We find that intolerance leads to a consensus of tolerant agents during an initial stage that scales as $τ^+ \sim γ^{-1} \ln N$, who then reach an opinion consensus during the second stage in a time that scales as $τ\sim N$, where $N$ is the number of agents. Therefore, very intolerant agents ($γ\ll 1$) could considerably slow down dynamics towards the final consensus state. We also find that the inclusion of a fraction $σ_{\mathbb{B}}^-$ of bots breaks the symmetry between both opinions, driving the system to a consensus of intolerant agents with the bots' opinion. Thus, bots eventually impose their opinion to the entire population, in a time that scales as $τ_B^- \sim γ^{-1}$ for $γ\ll σ_{\mathbb{B}}^-$ and $τ_B^- \sim 1/σ_{\mathbb{B}}^-$ for $σ_{\mathbb{B}}^- \ll γ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源