论文标题

基于多模式视网膜图像登记的血管结构的关键点检测和描述网络

A Keypoint Detection and Description Network Based on the Vessel Structure for Multi-Modal Retinal Image Registration

论文作者

Sindel, Aline, Hohberger, Bettina, Dehcordi, Sebastian Fassihi, Mardin, Christian, Lämmer, Robert, Maier, Andreas, Christlein, Vincent

论文摘要

眼科成像利用不同的成像系统,例如颜色眼底,红外,荧光素血管造影,光学相干断层扫描(OCT)或OCT血管造影。经常分析具有不同方式或采集时间的多个图像以诊断视网膜疾病。通过多模式登记可以自动对齐图像中的容器结构,可以支持眼科医生的工作。我们的方法使用卷积神经网络在多模式视网膜图像中提取血管结构的特征。我们使用分类和跨模式描述符损失函数在小斑块上共同训练关键点检测和描述网络,并将网络应用于测试阶段的完整图像大小。我们的方法证明了与竞争方法相比,我们和公共多模式数据集的最佳注册性能。

Ophthalmological imaging utilizes different imaging systems, such as color fundus, infrared, fluorescein angiography, optical coherence tomography (OCT) or OCT angiography. Multiple images with different modalities or acquisition times are often analyzed for the diagnosis of retinal diseases. Automatically aligning the vessel structures in the images by means of multi-modal registration can support the ophthalmologists in their work. Our method uses a convolutional neural network to extract features of the vessel structure in multi-modal retinal images. We jointly train a keypoint detection and description network on small patches using a classification and a cross-modal descriptor loss function and apply the network to the full image size in the test phase. Our method demonstrates the best registration performance on our and a public multi-modal dataset in comparison to competing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源