论文标题

在可见到近红外波长时水性和空气环境中的光学频率梳子

Optical Frequency Combs in Aqueous and Air Environments at Visible to Near-IR Wavelengths

论文作者

Choi, Gwangho, Gin, Adley, Su, Judith

论文摘要

在不使用标签或捕获剂的情况下检测和识别高灵敏度的分子的能力对于医学诊断,威胁识别,环境监测和基础科学非常重要。微型类光谐振器与降噪技术结合使用,已经显示出能够标记的单分子检测,但是,它们仍然需要捕获剂和目标分子的先验知识。光学频率梳子可以潜在地提供有关微孔子evanscent场内分子的高精度光谱信息;但是,这尚未在空气或水性生物学传感中得到证明。特别是对于水溶液,障碍包括耦合和热稳定性,Q因子减少以及模式频谱的变化。在这里,我们使用光学微音剂克服了对单分子光谱的关键挑战:当浸入空气或水溶液中时,在可见到近红外波长时会产生频率梳子。所需的色散是通过模式偶联实现的,我们可以使用较大的微型型可以实现,但具有相同的形状和材料,以前已显示出非常高的敏感性生物传感的理想选择。我们认为,该平台的持续发展将使我们将来可以在任何波长下在不使用标签的情况下同时检测和鉴定气体和液体中的单分子。

The ability to detect and identify molecules at high sensitivity without the use of labels or capture agents is important for medical diagnostics, threat identification, environmental monitoring, and basic science. Microtoroid optical resonators, when combined with noise reduction techniques, have been shown capable of label-free single molecule detection, however, they still require a capture agent and prior knowledge of the target molecule. Optical frequency combs can potentially provide high precision spectroscopic information on molecules within the evanescent field of the microresonator; however, this has not yet been demonstrated in air or aqueous biological sensing. For aqueous solutions in particular, impediments include coupling and thermal instabilities, reduced Q factor, and changes to the mode spectrum. Here we overcome a key challenge toward single-molecule spectroscopy using optical microresonators: the generation of a frequency comb at visible to near-IR wavelengths when immersed in either air or aqueous solution. The required dispersion is achieved via intermodal coupling, which we show is attainable using larger microtoroids, but with the same shape and material that has previously been shown ideal for ultra-high sensitivity biosensing. We believe that the continuous evolution of this platform will allow us in the future to simultaneously detect and identify single molecules in both gas and liquid at any wavelength without the use of labels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源