论文标题

欺诈者小组检测的时空图表学习

Spatio-Temporal Graph Representation Learning for Fraudster Group Detection

论文作者

Shehnepoor, Saeedreza, Togneri, Roberto, Liu, Wei, Bennamoun, Mohammed

论文摘要

在潜在的经济利益的推动下,公司可能会雇用欺诈团体来撰写虚假评论,以使竞争对手降级或促进自己的业务。这样的群体在误导客户方面取得了更大的成功,因为人们更有可能受到大型群体的看法的影响。为了检测此类组,一个共同的模型是代表欺诈者组的静态网络,因此忽略了审阅者的纵向行为,因此审阅者组中审阅者之间的共同评论关系的动态。因此,这些方法无法排除离群审稿人的能力,而异常审稿人是有意伪装在一个小组中的欺诈者,而真正的审稿人恰好是欺诈者团体的共同审查。为了解决这一问题,在这项工作中,我们建议首先利用Hin-RNN在两个审阅者的代表学习中的有效性,同时捕获审稿人之间的合作,我们首先利用Hin-RNN在28天的固定时间内使用HIN-RNN来建模审阅者在小组中的共同审查关系。我们将其称为空间关系学习表示形式,以表示这项工作对其他网络方案的普遍性。然后,我们在空间关系上使用RNN来预测小组中审阅者的时空关系。在第三步中,图形卷积网络(GCN)使用这些预测关系来完善审阅者的向量表示。然后,这些精制表示形式用于删除异常审稿人。然后将其余审阅者表示的平均值馈送到一个简单的完全连接层,以预测该组是否是欺诈组。拟议方法的详尽实验显示,分别在Yelp(Amazon)数据集上分别在精确,召回和F1值的三种方法中提高了5%(4%),12%(5%),12%(5%)的改善。

Motivated by potential financial gain, companies may hire fraudster groups to write fake reviews to either demote competitors or promote their own businesses. Such groups are considerably more successful in misleading customers, as people are more likely to be influenced by the opinion of a large group. To detect such groups, a common model is to represent fraudster groups' static networks, consequently overlooking the longitudinal behavior of a reviewer thus the dynamics of co-review relations among reviewers in a group. Hence, these approaches are incapable of excluding outlier reviewers, which are fraudsters intentionally camouflaging themselves in a group and genuine reviewers happen to co-review in fraudster groups. To address this issue, in this work, we propose to first capitalize on the effectiveness of the HIN-RNN in both reviewers' representation learning while capturing the collaboration between reviewers, we first utilize the HIN-RNN to model the co-review relations of reviewers in a group in a fixed time window of 28 days. We refer to this as spatial relation learning representation to signify the generalisability of this work to other networked scenarios. Then we use an RNN on the spatial relations to predict the spatio-temporal relations of reviewers in the group. In the third step, a Graph Convolution Network (GCN) refines the reviewers' vector representations using these predicted relations. These refined representations are then used to remove outlier reviewers. The average of the remaining reviewers' representation is then fed to a simple fully connected layer to predict if the group is a fraudster group or not. Exhaustive experiments of the proposed approach showed a 5% (4%), 12% (5%), 12% (5%) improvement over three of the most recent approaches on precision, recall, and F1-value over the Yelp (Amazon) dataset, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源