论文标题
关于从Boltzmann到Navier-Stokes-Fourier的收敛性,以获取一般初始数据
On the convergence from Boltzmann to Navier-Stokes-Fourier for general initial data
论文作者
论文摘要
在这项工作中,我们证明了Boltzman方程的强溶液的收敛性,用于在速度变量中具有多项式衰减的初始数据,降低了不可压缩的Navier-Stokes-stokes-foury系统。我们特别表明,在其流体动力学极限之前,重新固定的玻尔兹曼方程的解决方案不会爆炸。通过改编M. Briant,S。Merino和C. Mouhot提出的策略,将玻尔兹曼方程的解决方案作为多项式衰减的零件,第二个带有高斯衰变的策略,从而实现了这一点。高斯部分的处理方法让人联想到I. Gallagher和I. Tristani使用的方法。
In this work, we prove the convergence of strong solutions of the Boltzman equation, for initial data having polynomial decay in the velocity variable, towards those of the incompressible Navier-Stokes-Fourier system. We show in particular that the solutions of the rescaled Boltzmann equation do not blow up before their hydrodynamic limit does. This is made possible by adapting a strategy introduced by M. Briant, S. Merino and C. Mouhot of writing the solution to the Boltzmann equation as the sum a part with polynomial decay and a second one with Gaussian decay. The Gaussian part is treated with an approach reminiscent of the one used by I. Gallagher and I. Tristani.