论文标题
移动分析的选择性边缘计算
Selective Edge Computing for Mobile Analytics
论文作者
论文摘要
越来越多的移动应用程序依赖于机器学习(ML)例程来分析数据。在用户设备上执行此类任务可节省用于传输和处理大型数据量的能量,该数据量在遥远的云部署服务器上。但是,由于内存和计算局限性,设备通常无法支持所需的资源密集型例程,也无法准确执行任务。在这项工作中,我们通过提出和评估严格的选择性卸载框架来解决资源受限系统中边缘辅助分析的问题。设备在本地执行任务,并将它们外包给Cloudlet服务器,仅当它们预测性能的重大改进时。我们考虑了卸载收益和资源成本时期的实际情况;并提出了一种在线优化算法,该算法可最大化服务性能,而无需了解此信息。我们的方法依赖于近似双重亚级别方法与原始平均方案结合使用,并且在对系统随机性的最小假设下起作用。我们在无线测试床上充分实施了所提出的算法,并使用最先进的图像识别应用程序评估了其性能,从而找到了可观的性能增长和成本节省。
An increasing number of mobile applications rely on Machine Learning (ML) routines for analyzing data. Executing such tasks at the user devices saves the energy spent on transmitting and processing large data volumes at distant cloud-deployed servers. However, due to memory and computing limitations, the devices often cannot support the required resource-intensive routines and fail to accurately execute the tasks. In this work, we address the problem of edge-assisted analytics in resource-constrained systems by proposing and evaluating a rigorous selective offloading framework. The devices execute their tasks locally and outsource them to cloudlet servers only when they predict a significant performance improvement. We consider the practical scenario where the offloading gain and resource costs are time-varying; and propose an online optimization algorithm that maximizes the service performance without requiring to know this information. Our approach relies on an approximate dual subgradient method combined with a primal-averaging scheme, and works under minimal assumptions about the system stochasticity. We fully implement the proposed algorithm in a wireless testbed and evaluate its performance using a state-of-the-art image recognition application, finding significant performance gains and cost savings.