论文标题
外来普通重力的规范描述
Canonical description of Exotic General Massive Gravity
论文作者
论文摘要
异国情调的一般大型重力是实现所谓的第三路一致性的近代对象引力理论,最简单的是最小的大型重力。我们研究了外来大规模重力的一阶配方的规范结构。通过使用Dirac Hamiltonian形式主义,我们系统地发现了一组完整的物理约束,包括主要,次要和第三级,并明确计算它们之间的泊松支架代数。特别是,我们证明了第三级约束的一致性条件提供了明确的表达式,可以在Dreibein $ e $方面为辅助字段$ f $ $ f $和$ h $进行代数求解。在这种配置中,为了确认该理论不含鬼魂,整个约束集被分为一流和二等阶层,显示仅存在与一个大型gravelt子相对应的两个物理自由度。此外,我们确定了所有动态变量的转换定律,这些变量基本上与衡量对称性相对应,这是由一流约束产生的。最后,考虑到所有二等限制,我们将Dirac Matrix与Dirac的支架一起明确计算。
Exotic General Massive Gravity is the next-to-simplest gravitational theory fulfilling the so-called third-way consistency, the simplest being Minimal Massive Gravity. We investigate the canonical structure of the first-order formulation of Exotic General Massive Gravity. By using the Dirac Hamiltonian formalism, we systematically discover the complete set of physical constraints, including primary, secondary, and tertiary ones, and explicitly compute the Poisson bracket algebra between them. In particular, we demonstrate that the consistency condition for the tertiary constraints provides explicit expressions which can be solved algebraically for the auxiliary fields $f$ and $h$ in terms of the dreibein $e$. In this configuration, to confirm that the theory is ghost-free, the whole set of constraints is classified into first and second-class ones showing the existence of only two physical degrees of freedom corresponding to one massive graviton. Furthermore, we identify the transformation laws for all of the dynamical variables corresponding essentially to gauge symmetries, generated by the first-class constraints. Finally, by taking into account all the second-class constraints, we explicitly compute the Dirac matrix together with the Dirac's brackets.