论文标题

测量保留全态载体场,不变的反典型分隔和吉布斯稳定性

Measure preserving holomorphic vector fields, invariant anti-canonical divisors and Gibbs stability

论文作者

Berman, Robert J.

论文摘要

令X为紧凑的复杂歧管,其反典型线束很大。我们表明,如果X稳定(在任何级别),则X不承认非平凡的全态载体场。该证明是基于消失的结果,用于衡量独立利益的X上保存全体形态载体场。作为一种应用,它表明,通常,如果抗传统线束很大,则X上没有骨膜载体场,它们与X上的非单明性不可减至的抗抗典型分裂S有相切的距离。更一般而言,结果可用于对数终端奇异性和原木和原木和对数的品种。还指出了与Berndtsson有关普遍化的哈密顿人和量化功能的强制性的关系。

Let X be a compact complex manifold whose anti-canonical line bundle is big. We show that X admits no non-trivial holomorphic vector fields if it is Gibbs stable (at any level). The proof is based on a vanishing result for measure preserving holomorphic vector fields on X of independent interest. As an application it shown that, in general, if the anti-canonical line bundle is big, there are no holomorphic vector fields on X that are tangent to a non-singular irreducible anti-canonical divisor S on X. More generally, the result holds for varieties with log terminal singularities and log pairs. Relations to a result of Berndtsson about generalized Hamiltonians and coercivity of the quantized Ding functional are also pointed out.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源