论文标题
初始扰动对非马克维亚随机步行的首次填充时间的永恒影响
Everlasting impact of initial perturbations on first-passage times of non-Markovian random walks
论文作者
论文摘要
持久性被定义为波动信号尚未达到阈值直至给定观察时间的阈值,在随机过程理论中起着至关重要的作用。它量化了过程的动力学,如相排序,反应扩散或界面弛豫动力学。随着时间的流逝,持久性可以随着时间的流逝而持续衰减的事实引发了许多实验和理论研究。但是,计算持续指数的一般分析方法不能应用于在施加的初始扰动后短暂放松的非马克维亚系统的普遍存在。在这里,我们介绍了一个理论框架,该框架能够对$ d $二维的高斯非马克维亚过程的持久性指数进行非扰动确定,而在初始扰动后,一般的非固定动力学将一般的非固定动力学放松到稳态。分析了两种典型的情况类别:系统在初始时间进行温度淬火,或者假定其过去的轨迹已被观察到并因此已知。总而言之,我们的结果揭示了和量化的,基于高斯过程,初始扰动对非马克维亚过程的第一级统计数据的深刻影响。我们的理论涵盖了高于一个的空间维度的情况,为具有非平衡初始条件的复杂系统的非平凡反应动力学开辟了道理。
Persistence, defined as the probability that a fluctuating signal has not reached a threshold up to a given observation time, plays a crucial role in the theory of random processes. It quantifies the kinetics of processes as varied as phase ordering, reaction diffusion or interface relaxation dynamics. The fact that persistence can decay algebraically with time with non trivial exponents has triggered a number of experimental and theoretical studies. However, general analytical methods to calculate persistence exponents cannot be applied to the ubiquitous case of non-Markovian systems relaxing transiently after an imposed initial perturbation. Here, we introduce a theoretical framework that enables the non perturbative determination of persistence exponents of $d$-dimensional Gaussian non-Markovian processes with general non stationary dynamics relaxing to a steady state after an initial perturbation. Two prototypical classes of situations are analyzed: either the system is subjected to a temperature quench at initial time, or its past trajectory is assumed to have been observed and thus known. Altogether, our results reveal and quantify, on the basis of Gaussian processes, the deep impact of initial perturbations on first-passage statistics of non-Markovian processes. Our theory covers the case of spatial dimension higher than one, opening the way to characterize non-trivial reaction kinetics for complex systems with non-equilibrium initial conditions.