论文标题

叮咬:生存数据平衡的个人治疗效果

BITES: Balanced Individual Treatment Effect for Survival data

论文作者

Schrod, Stefan, Schäfer, Andreas, Solbrig, Stefan, Lohmayer, Robert, Gronwald, Wolfram, Oefner, Peter J., Beißbarth, Tim, Spang, Rainer, Zacharias, Helena U., Altenbuchinger, Michael

论文摘要

估计干预措施对患者预后的影响是个性化医学的关键方面之一。培训数据仅包括管理治疗的结果,而不是替代治疗(所谓的反事实结果),通常会挑战他们的推论。基于观察数据,即〜数据,对于连续和二进制结果变量,建议没有随机应用干预措施的数据,提出了几种方法。但是,如果在观察期内未发生事件,则通常会根据事件时间数据记录患者结果,包括右审查事件时间。尽管很重要,但事件时间数据很少用于治疗优化。 我们建议一种名为叮咬的方法(生存数据平衡的个体治疗效果),该方法结合了特定治疗的半参数损失与治疗均衡的深层神经网络;即〜我们使用积分概率指标(IPM)将治疗和未经处理的患者之间的差异定向。我们在模拟研究中表明,这种方法的表现优于最新技术。此外,我们在对一系列乳腺癌患者的应用中证明了激素治疗可以根据六个常规参数进行优化。我们在独立队列中成功验证了这一发现。叮咬是作为易于使用的Python实现的。

Estimating the effects of interventions on patient outcome is one of the key aspects of personalized medicine. Their inference is often challenged by the fact that the training data comprises only the outcome for the administered treatment, and not for alternative treatments (the so-called counterfactual outcomes). Several methods were suggested for this scenario based on observational data, i.e.~data where the intervention was not applied randomly, for both continuous and binary outcome variables. However, patient outcome is often recorded in terms of time-to-event data, comprising right-censored event times if an event does not occur within the observation period. Albeit their enormous importance, time-to-event data is rarely used for treatment optimization. We suggest an approach named BITES (Balanced Individual Treatment Effect for Survival data), which combines a treatment-specific semi-parametric Cox loss with a treatment-balanced deep neural network; i.e.~we regularize differences between treated and non-treated patients using Integral Probability Metrics (IPM). We show in simulation studies that this approach outperforms the state of the art. Further, we demonstrate in an application to a cohort of breast cancer patients that hormone treatment can be optimized based on six routine parameters. We successfully validated this finding in an independent cohort. BITES is provided as an easy-to-use python implementation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源