论文标题

即时现实:3D虚拟现实流的凝视症状感知优化

Instant Reality: Gaze-Contingent Perceptual Optimization for 3D Virtual Reality Streaming

论文作者

Chen, Shaoyu, Duinkharjav, Budmonde, Sun, Xin, Wei, Li-Yi, Petrangeli, Stefano, Echevarria, Jose, Silva, Claudio, Sun, Qi

论文摘要

媒体流已经用于各种应用程序,例如娱乐,可视化和设计。与通常顺序消耗内容的视频/音频流不同,游戏(例如游戏)需要流式传输3D资产来促进客户端互动,例如对象操纵和观点运动。与音频和视频流相比,3D流通常需要较大的数据大小,但延迟较低,以确保足够的渲染质量,分辨率和潜伏期以实现感知舒适度。因此,流式传输3D资产比流音频/视频更具挑战性,并且现有的解决方案通常会遭受较长的加载时间或质量有限。 为了解决这个关键和及时的问题,我们提出了一种感知优化的渐进式3D流媒体方法,以实现空间质量和沉浸式相互作用的时间一致性。根据频域中的人类视觉机制,我们的模型选择并计划流数据集以获得最佳的时空质量。我们还训练一个神经网络,以便为实时客户服务器应用程序加速这一决策过程。我们通过在不同的网络条件(从3G到5G)和客户端设备(HMD和传统显示器)(HMD和传统显示器)下的主观研究和客观分析评估我们的方法,并比其他解决方案表现出更好的视觉质量和时间一致性。

Media streaming has been adopted for a variety of applications such as entertainment, visualization, and design. Unlike video/audio streaming where the content is usually consumed sequentially, 3D applications such as gaming require streaming 3D assets to facilitate client-side interactions such as object manipulation and viewpoint movement. Compared to audio and video streaming, 3D streaming often requires larger data sizes and yet lower latency to ensure sufficient rendering quality, resolution, and latency for perceptual comfort. Thus, streaming 3D assets can be even more challenging than streaming audios/videos, and existing solutions often suffer from long loading time or limited quality. To address this critical and timely issue, we propose a perceptually-optimized progressive 3D streaming method for spatial quality and temporal consistency in immersive interactions. Based on the human visual mechanisms in the frequency domain, our model selects and schedules the streaming dataset for optimal spatial-temporal quality. We also train a neural network for our model to accelerate this decision process for real-time client-server applications. We evaluate our method via subjective studies and objective analysis under varying network conditions (from 3G to 5G) and client devices (HMD and traditional displays), and demonstrate better visual quality and temporal consistency than alternative solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源