论文标题
通过使用二甲基甲酰胺(DMF)相对于丙酮作为溶剂,环氧树脂/石墨烯纳米复合材料的热传导率的出色增强
Superior enhancement in thermal conductivity of epoxy/graphene nanocomposites through use of dimethylformamide (DMF) relative to acetone as solvent
论文作者
论文摘要
在这项工作中,我们证明,与丙酮溶剂相比,使用二甲基甲酰胺(DMF)作为溶剂,可以更好地分散环氧基基质中的环氧基质基质,从而导致较高的导热电导率环氧 - 氧基 - 格雷芬烯纳米复合材料。虽然溶剂在启用高级机械性能中的作用之前已经解决了,但概述的研究是第一个解决溶剂对导热率增强的影响的研究,并为实现高热导热率的聚合物复合材料提供了新的途径。石墨烯纳米颗粒均匀分散到环氧树脂中可以改善与聚合物的热接触,从而导致聚合物基质和石墨烯之间的界面界面热电导。通常使用有机溶剂来实现石墨烯的有效分散到环氧基质中。在这项研究中,我们将两个有机溶剂(DMF)和丙酮的效果比较了它们在将石墨烯分散到环氧基质中的效率以及它们对增强复合材料导热率的影响。我们发现,与使用丙酮以7重重%填充物组成相比,用DMF溶剂制成的聚合物 - 透明烯复合材料显示出44%的导热率。激光扫描共聚焦显微镜(LSCM)成像表明,使用DMF作为溶剂制备的石墨烯 - 环氧复合材料与具有丙酮基于丙酮的样品相比,具有更大的石墨烯 - 纳米纤维素的分散剂,表现出高达211%较大的石墨烯共聚物。与有效培养基理论的比较表明,对于丙酮制备的复合材料,DMF的石墨烯和环氧树脂之间的界面热电阻降低了近35%。这些结果从根本上提供了新的途径,以实现更高的热导率石墨烯环氧复合材料,这对于广泛的热管理技术来说是关键的重要性。
In this work, we demonstrate that use of dimethylformamide (DMF) as a solvent leads to better dispersion of graphene nanoplatelets in epoxy matrix compared to acetone solvent, in turn leading to higher thermal conductivity epoxy-graphene nanocomposites. While role of solvents in enabling superior mechanical properties has been addressed before, outlined study is the first to address the effect of solvents on thermal conductivity enhancement and provides novel pathways for achieving high thermal conductivity polymer composite materials. Uniform dispersion of graphene nanoparticles into epoxy can improve thermal contact with polymer leading to superior interface thermal conductance between polymer matrix and graphene. Organic solvents are typically employed to achieve efficient dispersion of graphene into the epoxy matrix. In this study, we compare the effect of two organic solvents, dimethylformamide (DMF) and acetone, in terms of their efficiency in dispersing graphene into the epoxy matrix and their effect on enhancing thermal conductivity of the composite. We find that polymer-graphene composites made with DMF solvent show 44% higher thermal conductivity compared to those made using acetone at 7 weight% filler composition. Laser scanning confocal microscopy (LSCM) imaging reveals that graphene-epoxy composites, prepared using DMF as solvent, exhibit more uniform dispersion of graphene-nanoplatelets compared to the case of acetone with acetone-based samples exhibiting up to 211% larger graphene agglomerations. Comparison with effective medium theory reveals an almost 35% lower interface thermal resistance between graphene and epoxy for DMF relative to acetone prepared composite. These results provide fundamentally new avenues to achieve higher thermal conductivity graphene-epoxy composites, of key importance for a wide range of thermal management technologies.