论文标题
温度升高如何诱导酸性水溶液溶液中的相分离
How temperature rise induces phase separation in acidic aqueous biphasic solutions
论文作者
论文摘要
基于离子 - 液体的酸性水溶液(ACAB)最近在金属回收领域取得了突破。实际上,氯丁基二苯基磷酸(p $ _ {44414} $ cl)和酸与水含量大于60 \%的混合物具有非常好的金属离子的提取效率。此外,该三元溶液呈现较低的溶液临界温度(LCST),这意味着相图的双相区域随温度升高而增加,在其他术语中,与均匀液体的相位分离可以通过温度的升高来诱导,通常是几个程度的。我们在这里解决了驱动相位分离的微观机制。小角度中子散射为我们提供了各种酸含量和温度的结构信息。我们表征了二元离子液体/水溶液中的球形胶束形成,并在添加酸后胶束聚集,这是由于静电排斥的筛选。如果添加盐会导致溶液中相同的过渡,则离子强度不是相关参数,并且必须考虑更微妙的效果,例如离子大小或极化性以合理化相图。酸浓度和/或温度的增加最终导致胶束絮凝和相位分离。最后一步是通过在胶束表面上的氯离子吸附实现的,并具有$ \ sim $ 12 kj/mol的吸附焓。胶束之间的吸引力可以从DLVO潜力方面得到充分理解。这种放热的吸附弥补了熵成本,从而导致系统的违反直觉行为。
Ionic-liquid based acidic aqueous biphasic solutions (AcABS) recently offered a breakthrough in the field of metal recycling. Indeed, the mixture of tributyltetradecylphosphonium chloride (P$_{44414}$Cl) and acid with water content larger than 60 \% presents a phase separation with very good extraction efficiency for metallic ions. Moreover, this ternary solution presents a Lower Solution Critical Temperature (LCST), meaning that the biphasic area of the phase diagram increases upon increase of temperature, in other terms the phase separation from a homogeneous liquid can be induced by an elevation of temperature, typically a few tens of degrees. We address here the microscopic mechanisms driving the phase separation. Small Angle Neutron Scattering provides us with structural information for various acid content and temperature. We characterized the spherical micelle formation in the binary ionic liquid/water solution and the micelle aggregation upon addition of acid, due of the screening of electrostatic repulsion. If addition of salt leads to identical transitions in the solution, the ionic strength is not a relevant parameter and more subtle effects such as ion size or polarizability have to be taken into account to rationalize the phase diagram. The increase of both acid concentration and/or temperature eventually leads to the micelle flocculation and phase separation. This last step is achieved through chloride ion adsorption at the surface of the micelle with an enthalpy of adsorption of $\sim$ 12 kJ/mol. The attraction between micelles can be well understood in terms of DLVO potential. This exothermic adsorption compensates the entropic cost, leading to the counter-intuitive behavior of the system.