论文标题
图形的色数和汉密尔顿
Chromatic Number and Hamiltonicity of Graphs
论文作者
论文摘要
令$ g $为$ k $ - 连接($ k \ geq 2 $)订单$ n $的图。如果$χ(g)\ geq n -k $,则$ g $是hamiltonian或$ k_k \ vee(k_k^c \ cup k_ {n -2k})$,带有$ n \ geq 2 k + 1 $,其中$χ(g)$是$ g $ g $ g $ g $的$χ(g)$。
Let $G$ be a $k$ - connected ($k \geq 2$) graph of order $n$. If $χ(G) \geq n - k$, then $G$ is Hamiltonian or $K_k \vee (K_k^c \cup K_{n - 2k})$ with $n \geq 2 k + 1$, where $χ(G)$ is the chromatic number of the graph $G$.