论文标题

通过元学习方法进行引导信息增强图

Bootstrapping Informative Graph Augmentation via A Meta Learning Approach

论文作者

Gao, Hang, Li, Jiangmeng, Qiang, Wenwen, Si, Lingyu, Sun, Fuchun, Zheng, Changwen

论文摘要

最近的作品以一种自我监督的方式探索学习图表。在图对比度学习中,基准方法采用了各种图形增强方法。但是,大多数增强方法是不可行的,这导致产生无晶增强图的问题。这种增强可能会退化图对比度学习方法的表示能力。因此,我们激励我们通过可学习的图形增强器(称为Meta Graph Exmentation(Mega))生成增强图的方法。然后,我们澄清说,“良好”的图形扩展必须在实例级别和功能级别的信息级别上具有统一性。为此,我们提出了一种新型的方法来学习增强图,该方法可以以统一性和信息性产生增强。增强图的目的是促进我们的功能提取网络,以学习更具歧视性的特征表示,这激发了我们提出元学习范式。从经验上讲,多个基准数据集的实验表明,大型巨型的表现优于图形自我监督学习任务中最新方法。进一步的实验研究证明了不同术语的有效性。

Recent works explore learning graph representations in a self-supervised manner. In graph contrastive learning, benchmark methods apply various graph augmentation approaches. However, most of the augmentation methods are non-learnable, which causes the issue of generating unbeneficial augmented graphs. Such augmentation may degenerate the representation ability of graph contrastive learning methods. Therefore, we motivate our method to generate augmented graph by a learnable graph augmenter, called MEta Graph Augmentation (MEGA). We then clarify that a "good" graph augmentation must have uniformity at the instance-level and informativeness at the feature-level. To this end, we propose a novel approach to learning a graph augmenter that can generate an augmentation with uniformity and informativeness. The objective of the graph augmenter is to promote our feature extraction network to learn a more discriminative feature representation, which motivates us to propose a meta-learning paradigm. Empirically, the experiments across multiple benchmark datasets demonstrate that MEGA outperforms the state-of-the-art methods in graph self-supervised learning tasks. Further experimental studies prove the effectiveness of different terms of MEGA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源