论文标题

在多域边缘云上切片的CDN切片

CDN Slicing over a Multi-Domain Edge Cloud

论文作者

Taleb, T., Frangoudis, P. A., Benkacem, I., Ksentini, A.

论文摘要

我们介绍了用于在多域云上提供视频内容传递网络(CDN)功能的架构。我们介绍了CDN切片的概念,即根据内容提供商的请求创建的CDN服务实例,自主管理,并跨越多个潜在的异质边缘云基础架构。我们的设计是针对5G移动网络上下文量身定制的,它基于其固有的可编程性,管理灵活性以及在移动边缘级别的云资源的可用性,从而接近最终用户。我们利用网络函数虚拟化(NFV)和多访问边缘计算(MEC)技术,提出了一个与最近的NFV和MEC标准一致的系统。为了提供体验质量(QOE)优化的视频服务,我们将视频QoE的经验模型作为服务工作负载的函数,再加上多层服务监控,请驱动我们的切片资源分配和弹性管理机制。这些管理方案具有自动计算资源缩放,并直接转码将视频位速率适应当前的网络条件。通过测试型实验证明它们的有效性。

We present an architecture for the provision of video Content Delivery Network (CDN) functionality as a service over a multi-domain cloud. We introduce the concept of a CDN slice, that is, a CDN service instance which is created upon a content provider's request, is autonomously managed, and spans multiple potentially heterogeneous edge cloud infrastructures. Our design is tailored to a 5G mobile network context, building on its inherent programmability, management flexibility, and the availability of cloud resources at the mobile edge level, thus close to end users. We exploit Network Functions Virtualization (NFV) and Multi-access Edge Computing (MEC) technologies, proposing a system which is aligned with the recent NFV and MEC standards. To deliver a Quality-of-Experience (QoE) optimized video service, we derive empirical models of video QoE as a function of service workload, which, coupled with multi-level service monitoring, drive our slice resource allocation and elastic management mechanisms. These management schemes feature autonomic compute resource scaling, and on-the-fly transcoding to adapt video bit-rate to the current network conditions. Their effectiveness is demonstrated via testbed experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源