论文标题
应变调整的拓扑相变和ZRTE5微晶的非常规Zeeman效应
Strain-tuned topological phase transition and unconventional Zeeman effect in ZrTe5 microcrystals
论文作者
论文摘要
电子波函数的几何相(浆果相)是固体拓扑特性的基本基础。调节带结构为浆果相提供了调整旋钮,在极端情况下,驱动了拓扑相变。尽管在拓扑材料研究中有很大的发展,但在同一材料中追踪浆果阶段对量子电荷转运的影响,在不同的拓扑阶段之间进行调整仍然是一个挑战。在这里,我们在ZRTE5的磁转运研究中报告了这两者。通过用单轴应变调整带状结构,我们通过量子振荡直接通过无间隙狄拉克半学相绘制弱拓扑相变。此外,我们通过量子振荡的幅度证明了应变诱导的自旋依赖性浆果相对Zeeman效应的影响。我们表明,这种依赖自旋依赖性的浆果相,在固态系统中很大程度上忽略了,对于在拓扑材料中对狄拉克带的量子振荡进行建模至关重要。
The geometric phase (Berry phase) of an electronic wave function is the fundamental basis of the topological properties in solids. Modulating band structure provides a tuning knob for the Berry phase, and in the extreme case drives a topological phase transition. Despite the significant developments in topological materials study, it remains a challenge to tune between different topological phases while tracing the impact of the Berry phase on quantum charge transport, in the same material. Here we report both in a magnetotransport study of ZrTe5. By tuning the band structure with uniaxial strain, we directly map a weak- to strong- topological phase transition through a gapless Dirac semimetal phase via quantum oscillations. Moreover, we demonstrate the impact of the strain-tunable spin-dependent Berry phase on the Zeeman effect through the amplitude of the quantum oscillations. We show that such a spin-dependent Berry phase, largely neglected in solid-state systems, is critical in modeling quantum oscillations in Dirac bands in topological materials.