论文标题

基于一阶统计特征提取的SVM分类器鉴定鸡蛋生育能力

Identification of chicken egg fertility using SVM classifier based on first-order statistical feature extraction

论文作者

Saifullah, Shoffan, Suryotomo, Andiko Putro

论文摘要

这项研究旨在使用支持矢量机(SVM)分类器方法鉴定鸡蛋生育力。分类基础使用一阶统计(FOS)参数作为标识过程中的特征提取。这项研究是根据该过程的识别过程开发的,该过程仍然是手动的(常规)。尽管目前在识别过程中有许多技术,但它们仍然需要开发。因此,这项研究是图像处理技术领域的发展之一。样本数据使用先前研究的数据集,总共有100张鸡蛋图像。图像中的鸡蛋对象是一个对象。从这些数据中,每个肥沃和不育卵的分类是50个图像数据。鸡蛋图像数据成为图像处理中的输入,最初的过程是分割。此最初的细分旨在根据对象获取裁剪图像。使用灰度和图像增强方法的图像预处理修复裁剪的图像。该方法(图像增强)使用了两种组合方法:对比度有限的自适应直方图均衡(CLAHE)和直方图均衡(HE)。改进的图像成为使用FOS方法提取特征提取的输入。 FOS使用五个参数,即均值,熵,方差,偏度和峰度。进入SVM分类器方法的五个参数以识别鸡蛋的生育能力。这些实验的结果,识别过程中提出的方法的成功百分比为84.57%。因此,该方法的实施可以用作未来研究改进的参考。此外,可以使用二阶特征提取方法来提高其准确性并改善监督学习进行分类。

This study aims to identify chicken eggs fertility using the support vector machine (SVM) classifier method. The classification basis used the first-order statistical (FOS) parameters as feature extraction in the identification process. This research was developed based on the process's identification process, which is still manual (conventional). Although currently there are many technologies in the identification process, they still need development. Thus, this research is one of the developments in the field of image processing technology. The sample data uses datasets from previous studies with a total of 100 egg images. The egg object in the image is a single object. From these data, the classification of each fertile and infertile egg is 50 image data. Chicken egg image data became input in image processing, with the initial process is segmentation. This initial segmentation aims to get the cropped image according to the object. The cropped image is repaired using image preprocessing with grayscaling and image enhancement methods. This method (image enhancement) used two combination methods: contrast limited adaptive histogram equalization (CLAHE) and histogram equalization (HE). The improved image becomes the input for feature extraction using the FOS method. The FOS uses five parameters, namely mean, entropy, variance, skewness, and kurtosis. The five parameters entered into the SVM classifier method to identify the fertility of chicken eggs. The results of these experiments, the method proposed in the identification process has a success percentage of 84.57%. Thus, the implementation of this method can be used as a reference for future research improvements. In addition, it may be possible to use a second-order feature extraction method to improve its accuracy and improve supervised learning for classification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源