论文标题

射手座与银河系之间的相遇中的银河盘中迁移和混合

Migration and Mixing in the Galactic Disc from Encounters between Sagittarius and the Milky Way

论文作者

Carr, Christopher, Johnston, Kathryn V., Laporte, Chervin F. P., Ness, Melissa K.

论文摘要

由于与圆盘内的非轴对称干扰(如条形或螺旋臂)相互作用,螺旋星系中近圆形轨道上出生的恒星随后可以迁移到不同的轨道。本文扩展了迁移的研究,以使用射手座矮星系(SGR)与银河系(MW)相互作用的示例来检查外部影响的作用。我们首先做出冲动近似估计值以表征SGR光盘通道的影响。 SGR的潮汐强迫可以在指南半径($ΔR_G$)和轨道偏心率中产生变化,这是由最大径向偏移($ΔR​​_{\ rm max} $量化的。这些变化遵循圆盘表面的四极样模式,随着半半径的幅度增加。接下来,我们检查了SGR样卫星与MW样星系相互作用的无碰撞N体型模拟,发现SGR在外盘中的影响占据了圆盘通道之间的轨道的世俗演化。最后,我们使用相同的仿真来探索SGR诱导的迁移可能可观察到的特征,并用不同的年龄恒星种群绘制模拟。我们发现,随着SGR光盘通道,其诱导的迁移在一个环形中表现为Azimuthal金属性变化中的大约四倍($δ_{\ rm [fe/h]} $),以及轨道偏心的系统变化,$δr_\Δr_{\ rm max} $。这些系统的变化可以持续几个旋转周期。我们得出结论,这种特征的组合可用于区分塑造银河系薄盘的化学丰度模式的不同迁移机制。

Stars born on near-circular orbits in spiral galaxies can subsequently migrate to different orbits due to interactions with non-axisymmetric disturbances within the disc such as bars or spiral arms. This paper extends the study of migration to examine the role of external influences using the example of the interaction of the Sagittarius dwarf galaxy (Sgr) with the Milky Way (MW). We first make impulse approximation estimates to characterize the influence of Sgr disc passages. The tidal forcing from Sgr can produce changes in both guiding radius ($ΔR_g$) and orbital eccentricity, as quantified by the maximum radial excursion, $ΔR_ {\rm max} $. These changes follow a quadrupole-like pattern across the face of the disc, with amplitude increasing with Galactocentric radius. We next examine a collisionless N-body simulation of a Sgr-like satellite interacting with a MW-like galaxy and find that Sgr's influence in the outer disc dominates over the secular evolution of orbits between disc passages. Finally, we use the same simulation to explore possible observable signatures of Sgr-induced migration by painting the simulation with different age stellar populations. We find that following Sgr disc passages, the migration it induces manifests within an annulus as an approximate quadrupole in azimuthal metallicity variations ($δ_ {\rm [Fe/H]} $), along with systematic variations in orbital eccentricity, $ΔR_ {\rm max} $. These systematic variations can persist for several rotational periods. We conclude that this combination of signatures may be used to distinguish between the different migration mechanisms shaping the chemical abundance patterns of the Milky Way's thin disc.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源