论文标题
Stokes流动中扭曲,弯曲,不可扩展的纤维的流体动力学
The hydrodynamics of a twisting, bending, inextensible fiber in Stokes flow
论文作者
论文摘要
在游泳微生物和细胞细胞骨架中,不可延迟的纤维可抵抗弯曲和扭曲,并与周围的流体相互作用,以引起或抵抗大规模的液体运动。在本文中,我们开发了一种新颖的数值方法来模拟圆柱纤维,通过扩展我们先前在不可扩展的弯曲纤维方面的工作[Maxian等,Phys。液体6(1),014102]对具有扭曲弹性的纤维。在我们的“ Euler”模型中,Twist是一个标量函数,可测量纤维横截面相对于无扭曲框架的偏差,纤维仅在流体上平行于平行于中心线,而旋转流体速度的垂直成分则丢弃了转换速度的旋转速度。在本文的第一部分中,我们通过将该模型与另一种常用的“ Kirchhoff”配方进行比较来证明是合理的,其中纤维在流体上同时施加垂直和平行扭矩,并且需要垂直角流体速度与转换速度保持一致。然后,我们为Euler模型的流体动力学开发了一种光谱数值方法。我们使用rotne-prager-yamakawa张量的积分来定义流体动力学运算符,并通过一种新型的细长体积正交正交来评估这些积分,该正交需要沿着纤维沿10点以10点的顺序获得数字的准确性。我们证明,这种迁移率的选择消除了与渐近细长的人体理论相关的翻译翻译迁移率中的非物理负特征值,并确保纤维速度和纤维约束力的弱收敛性的强烈收敛性。我们将空间离散化与半图形的颞整合体配对,以确认扭曲弹性对弯曲纤维的松弛动力学的贡献可忽略不计,并研究旋转纤维的不稳定性。
In swimming microorganisms and the cell cytoskeleton, inextensible fibers resist bending and twisting, and interact with the surrounding fluid to cause or resist large-scale fluid motion. In this paper, we develop a novel numerical method for the simulation of cylindrical fibers by extending our previous work on inextensible bending fibers [Maxian et al., Phys. Rev. Fluids 6 (1), 014102] to fibers with twist elasticity. In our "Euler" model, twist is a scalar function that measures the deviation of the fiber cross section relative to a twist-free frame, the fiber exerts only torque parallel to the centerline on the fluid, and the perpendicular components of the rotational fluid velocity are discarded in favor of the translational velocity. In the first part of this paper, we justify this model by comparing it to another commonly-used "Kirchhoff" formulation where the fiber exerts both perpendicular and parallel torque on the fluid, and the perpendicular angular fluid velocity is required to be consistent with the translational fluid velocity. We then develop a spectral numerical method for the hydrodynamics of the Euler model. We define hydrodynamic mobility operators using integrals of the Rotne-Prager-Yamakawa tensor, and evaluate these integrals through a novel slender-body quadrature, which requires on the order of 10 points along the fiber to obtain several digits of accuracy. We demonstrate that this choice of mobility removes the unphysical negative eigenvalues in the translation-translation mobility associated with asymptotic slender body theories, and ensures strong convergence of the fiber velocity and weak convergence of the fiber constraint forces. We pair the spatial discretization with a semi-implicit temporal integrator to confirm the negligible contribution of twist elasticity to the relaxation dynamics of a bent fiber and study the instability of a twirling fiber.