论文标题

Riemannian几何形状和分子表面I:Laplacian的光谱

Riemannian Geometry and Molecular Surfaces I: Spectrum of the Laplacian

论文作者

Cole, Daniel J., Hall, Stuart J., Pirie, Rachael

论文摘要

基于配体的虚拟筛查旨在降低药物发现运动的成本和持续时间。形状相似性可用于筛选大型数据库,目的是通过比较具有已知有利特性的分子来预测潜在的新命中。本文介绍了RGMOLSA的理论,该理论是一种新的无对齐和无网格的基于表面的分子形状描述符,它源自Riemannian几何学的数学理论。分子作为一系列相交球的处理允许使用riemannian度量来描述其表面几何形状,该度量是通过考虑Laplacian的光谱而获得的。这给出了一个简单的矢量描述符,该描述符由加权表面积和八个非零特征值构建,可捕获表面形状。我们通过考虑一系列已知与初始测试用例相似的PDE5抑制剂来证明我们方法的潜力。与现有形状描述符相比,RGMOLSA表现出希望,并且能够处理不同的分子构象异构体。用于生成结果的代码和数据可通过GitHub提供:https://github.com/rpirie96/rgmolsa。

Ligand-based virtual screening aims to reduce the cost and duration of drug discovery campaigns. Shape similarity can be used to screen large databases, with the goal of predicting potential new hits by comparing to molecules with known favourable properties. This paper presents the theory underpinning RGMolSA, a new alignment-free and mesh-free surface-based molecular shape descriptor derived from the mathematical theory of Riemannian geometry. The treatment of a molecule as a series of intersecting spheres allows the description of its surface geometry using the Riemannian metric, obtained by considering the spectrum of the Laplacian. This gives a simple vector descriptor constructed of the weighted surface area and eight non-zero eigenvalues, which capture the surface shape. We demonstrate the potential of our method by considering a series of PDE5 inhibitors that are known to have similar shape as an initial test case. RGMolSA displays promise when compared to existing shape descriptors and in its capability to handle different molecular conformers. The code and data used to produce the results are available via GitHub: https://github.com/RPirie96/RGMolSA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源