论文标题

Nordhaus-gaddum问题,$ g $ free free着色

Nordhaus-Gaddum problem in term of $G$-free coloring

论文作者

Rowshan, Yaser

论文摘要

令$ h =(v(h),e(h))$为图。 $ k $ - 颜色的$ h $是映射$π:v(h)\ longrightArrow \ {1,2,\ ldots,k \} $,如果每个颜色类都诱导$ k_2 $ free subsgraph。对于图$ g $的订单,至少$ 2 $,$ g $ -free $ k $ - 颜色为$ h $,是一个映射$π:v(h)\ longrightarrow \ {1,2,\ ldots,k \} $,因此,每种颜色的$π$ copper ocpers of $ g $ coppect of $π$的诱导子图。 $ g $ - $ h $的$ f $ h $,是最低$ k $,因此它具有$ g $ - free $ k $ - 颜色,并用$χ_g(h)$表示。在本文中,我们在$ g $ free颜色的图表上给出了一些界限和属性,就顶点数量,最高度,最低度和色数提供了一些界限和属性。我们的主要结果是$ \ g $ free图的nordhaus-gaddum-type定理。

Let $H=(V(H),E(H))$ be a graph. A $k$-coloring of $H$ is a mapping $π: V(H) \longrightarrow \{1,2,\ldots, k\}$, if each color class induces a $K_2$-free subgraph. For a graph $G$ of order at least $2$, a $G$-free $k$-coloring of $H$, is a mapping $π: V(H) \longrightarrow \{1,2,\ldots,k\}$, so that the induced subgraph by each color class of $π$, contains no copy of $G$. The $G$-free chromatic number of $H$, is the minimum number $k$, so that it has a $G$-free $k$-coloring, and denoted by $χ_G(H)$. In this paper, we give some bounds and attributes on the $G$-free chromatic number of graphs, in terms of the number of vertices, maximum degree, minimum degree, and chromatic number. Our main results are the Nordhaus-Gaddum-type theorem for the $\G$-free chromatic number of a graph.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源