论文标题
MDS-NET:基于多尺度深度分层的单眼3D对象检测算法
MDS-Net: A Multi-scale Depth Stratification Based Monocular 3D Object Detection Algorithm
论文作者
论文摘要
由于缺乏深度信息,因此在自主驾驶中单眼3D对象检测非常具有挑战性。本文提出了一种基于多尺度深度分层的一阶段单眼3D对象检测算法,该算法使用无锚方法的方法在人均预测中检测3D对象。在拟议的MDS-NET中,开发了一种基于深度的分层结构,以通过在对象的深度和图像大小之间建立数学模型来提高网络的深度预测能力。然后开发出新的角度损耗函数,以进一步提高角度预测的准确性并提高训练的收敛速度。最终在后处理阶段应用了优化的软NMS,以调整候选框的置信度。 KITTI基准测试的实验表明,MDS-NET在满足实时要求的同时,在3D检测和BEV检测任务中优于3D检测和BEV检测任务中现有的单眼3D检测方法。
Monocular 3D object detection is very challenging in autonomous driving due to the lack of depth information. This paper proposes a one-stage monocular 3D object detection algorithm based on multi-scale depth stratification, which uses the anchor-free method to detect 3D objects in a per-pixel prediction. In the proposed MDS-Net, a novel depth-based stratification structure is developed to improve the network's ability of depth prediction by establishing mathematical models between depth and image size of objects. A new angle loss function is then developed to further improve the accuracy of the angle prediction and increase the convergence speed of training. An optimized soft-NMS is finally applied in the post-processing stage to adjust the confidence of candidate boxes. Experiments on the KITTI benchmark show that the MDS-Net outperforms the existing monocular 3D detection methods in 3D detection and BEV detection tasks while fulfilling real-time requirements.